Numerical robustness of extended Kalman filtering based state estimation in ill‐conditioned continuous‐discrete nonlinear stochastic chemical systems

平方根 稳健性(进化) 卡尔曼滤波器 控制理论(社会学) 估计员 非线性系统 均方根 数学 力矩(物理) 应用数学 计算机科学 随机微分方程 工程类 统计 人工智能 几何学 化学 控制(管理) 物理 电气工程 基因 经典力学 量子力学 生物化学
作者
Gennady Yu. Kulikov,Maria V. Kulikova
出处
期刊:International Journal of Robust and Nonlinear Control [Wiley]
卷期号:29 (5): 1377-1395 被引量:35
标识
DOI:10.1002/rnc.4440
摘要

Summary This paper presents a case study investigation of numerical robustness of extended Kalman filters used for estimation of stochastic chemical systems with ill‐conditioned measurements. Here, we consider both a batch reactor model and that of a continuously stirred tank reactor. Our purpose is to explore performance of extended Kalman filtering–based state estimators when the measurement model becomes increasingly ill conditioned. In this way, we determine numerically robust methods, which are suitable for accurate estimation of stochastic chemical systems in the presence of round‐off and other disturbances. We examine both conventional filters and their square‐root forms. All these algorithms are implemented by means of the conventional matrix inversion used in their measurement update steps and the Moore‐Penrose pseudoinversion as well. Furthermore, the square‐root filters under investigation are obtained in two ways, namely, by solving square‐root moment differential equations and by square rooting the filter itself. We show that only the square‐root filters grounded in the second approach (with use of stable orthogonal decompositions) are numerically robust and provide the excellent estimation accuracy within all our ill‐conditioned stochastic chemical system scenarios considered in this paper. In addition, the convectional filters and the square‐root variants based on solving moment equations are rather sensitive to round‐off and may be useful and accurate if the chemical system at hand is rather well conditioned.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyw发布了新的文献求助10
1秒前
2秒前
Aza发布了新的文献求助10
2秒前
2秒前
上官若男应助张之晟采纳,获得10
3秒前
3秒前
3秒前
明理友琴发布了新的文献求助10
4秒前
5秒前
温柔安筠关注了科研通微信公众号
5秒前
6秒前
LTB发布了新的文献求助10
7秒前
烟花应助wyw采纳,获得30
7秒前
暗生崎乐发布了新的文献求助10
7秒前
hms发布了新的文献求助10
8秒前
华仔应助龚书婷采纳,获得10
9秒前
张之晟完成签到,获得积分20
11秒前
Hgybdo完成签到,获得积分10
11秒前
kingwill发布了新的文献求助30
12秒前
ZJRerrr发布了新的文献求助10
13秒前
tree完成签到,获得积分10
17秒前
18秒前
FashionBoy应助tly采纳,获得10
18秒前
green完成签到,获得积分10
19秒前
星辰大海应助JIE采纳,获得10
20秒前
20秒前
幼安k完成签到,获得积分10
20秒前
evans完成签到,获得积分10
20秒前
烟花应助667788采纳,获得10
21秒前
21秒前
Owen应助ZHXX采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
bubu11关注了科研通微信公众号
22秒前
你好完成签到 ,获得积分10
22秒前
aikeyan发布了新的文献求助10
22秒前
peilinyu完成签到,获得积分10
23秒前
善学以致用应助ZJRerrr采纳,获得10
23秒前
卡西莫多发布了新的文献求助10
24秒前
吃面的章鱼完成签到,获得积分10
25秒前
25秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457360
求助须知:如何正确求助?哪些是违规求助? 4563864
关于积分的说明 14291813
捐赠科研通 4488514
什么是DOI,文献DOI怎么找? 2458558
邀请新用户注册赠送积分活动 1448595
关于科研通互助平台的介绍 1424229