Numerical robustness of extended Kalman filtering based state estimation in ill‐conditioned continuous‐discrete nonlinear stochastic chemical systems

平方根 稳健性(进化) 卡尔曼滤波器 控制理论(社会学) 估计员 非线性系统 均方根 数学 力矩(物理) 应用数学 计算机科学 随机微分方程 工程类 统计 人工智能 几何学 化学 控制(管理) 物理 电气工程 基因 经典力学 量子力学 生物化学
作者
Gennady Yu. Kulikov,Maria V. Kulikova
出处
期刊:International Journal of Robust and Nonlinear Control [Wiley]
卷期号:29 (5): 1377-1395 被引量:29
标识
DOI:10.1002/rnc.4440
摘要

Summary This paper presents a case study investigation of numerical robustness of extended Kalman filters used for estimation of stochastic chemical systems with ill‐conditioned measurements. Here, we consider both a batch reactor model and that of a continuously stirred tank reactor. Our purpose is to explore performance of extended Kalman filtering–based state estimators when the measurement model becomes increasingly ill conditioned. In this way, we determine numerically robust methods, which are suitable for accurate estimation of stochastic chemical systems in the presence of round‐off and other disturbances. We examine both conventional filters and their square‐root forms. All these algorithms are implemented by means of the conventional matrix inversion used in their measurement update steps and the Moore‐Penrose pseudoinversion as well. Furthermore, the square‐root filters under investigation are obtained in two ways, namely, by solving square‐root moment differential equations and by square rooting the filter itself. We show that only the square‐root filters grounded in the second approach (with use of stable orthogonal decompositions) are numerically robust and provide the excellent estimation accuracy within all our ill‐conditioned stochastic chemical system scenarios considered in this paper. In addition, the convectional filters and the square‐root variants based on solving moment equations are rather sensitive to round‐off and may be useful and accurate if the chemical system at hand is rather well conditioned.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
王小狗发布了新的文献求助10
刚刚
深情安青应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
魁辰应助科研通管家采纳,获得10
1秒前
虚幻泽洋完成签到,获得积分10
1秒前
李健应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
HannahLL应助科研通管家采纳,获得30
2秒前
2秒前
烟花应助百里幻竹采纳,获得10
2秒前
MJ完成签到,获得积分10
3秒前
无名老大应助小黑采纳,获得30
3秒前
Luna发布了新的文献求助10
4秒前
叽里咕卢发布了新的文献求助10
5秒前
5秒前
kittykitten发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
星辰大海应助黄金天下采纳,获得10
9秒前
盛夏如花发布了新的文献求助10
9秒前
苹果寻菱完成签到,获得积分20
9秒前
w王王完成签到 ,获得积分10
9秒前
大个应助精明之双采纳,获得10
9秒前
QJ发布了新的文献求助10
9秒前
10秒前
ccc应助第五个完全数采纳,获得20
10秒前
guan发布了新的文献求助10
10秒前
zh发布了新的文献求助30
10秒前
ccm发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455233
求助须知:如何正确求助?哪些是违规求助? 3050548
关于积分的说明 9021628
捐赠科研通 2739152
什么是DOI,文献DOI怎么找? 1502472
科研通“疑难数据库(出版商)”最低求助积分说明 694544
邀请新用户注册赠送积分活动 693320