Numerical robustness of extended Kalman filtering based state estimation in ill‐conditioned continuous‐discrete nonlinear stochastic chemical systems

平方根 稳健性(进化) 卡尔曼滤波器 控制理论(社会学) 估计员 非线性系统 均方根 数学 力矩(物理) 应用数学 计算机科学 随机微分方程 工程类 统计 人工智能 几何学 化学 控制(管理) 物理 电气工程 基因 经典力学 量子力学 生物化学
作者
Gennady Yu. Kulikov,Maria V. Kulikova
出处
期刊:International Journal of Robust and Nonlinear Control [Wiley]
卷期号:29 (5): 1377-1395 被引量:35
标识
DOI:10.1002/rnc.4440
摘要

Summary This paper presents a case study investigation of numerical robustness of extended Kalman filters used for estimation of stochastic chemical systems with ill‐conditioned measurements. Here, we consider both a batch reactor model and that of a continuously stirred tank reactor. Our purpose is to explore performance of extended Kalman filtering–based state estimators when the measurement model becomes increasingly ill conditioned. In this way, we determine numerically robust methods, which are suitable for accurate estimation of stochastic chemical systems in the presence of round‐off and other disturbances. We examine both conventional filters and their square‐root forms. All these algorithms are implemented by means of the conventional matrix inversion used in their measurement update steps and the Moore‐Penrose pseudoinversion as well. Furthermore, the square‐root filters under investigation are obtained in two ways, namely, by solving square‐root moment differential equations and by square rooting the filter itself. We show that only the square‐root filters grounded in the second approach (with use of stable orthogonal decompositions) are numerically robust and provide the excellent estimation accuracy within all our ill‐conditioned stochastic chemical system scenarios considered in this paper. In addition, the convectional filters and the square‐root variants based on solving moment equations are rather sensitive to round‐off and may be useful and accurate if the chemical system at hand is rather well conditioned.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
人123456发布了新的文献求助10
刚刚
852应助西瓜西瓜采纳,获得10
1秒前
我想要当富婆完成签到,获得积分10
4秒前
甜甜冰巧发布了新的文献求助10
4秒前
4秒前
许健完成签到 ,获得积分10
5秒前
充电宝应助Puffkten采纳,获得10
5秒前
only完成签到 ,获得积分10
7秒前
怕黑剑封发布了新的文献求助10
7秒前
9秒前
Eon完成签到,获得积分10
9秒前
10秒前
10秒前
令狐秋双完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
江边鸟完成签到 ,获得积分10
12秒前
微笑翠桃完成签到,获得积分20
13秒前
小开心发布了新的文献求助10
13秒前
Eon发布了新的文献求助10
13秒前
姚美阁完成签到 ,获得积分10
14秒前
mufcyang发布了新的文献求助10
15秒前
16秒前
16秒前
Puffkten发布了新的文献求助10
17秒前
与梦随行2011完成签到,获得积分10
17秒前
17秒前
高哈哈哈完成签到,获得积分10
18秒前
yr发布了新的文献求助10
21秒前
22秒前
微笑翠桃发布了新的文献求助10
25秒前
25秒前
马佳音完成签到 ,获得积分10
26秒前
在水一方应助Eon采纳,获得10
26秒前
TB123发布了新的文献求助10
26秒前
28秒前
JHL完成签到 ,获得积分10
28秒前
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714