Numerical robustness of extended Kalman filtering based state estimation in ill‐conditioned continuous‐discrete nonlinear stochastic chemical systems

平方根 稳健性(进化) 卡尔曼滤波器 控制理论(社会学) 估计员 非线性系统 均方根 数学 力矩(物理) 应用数学 计算机科学 随机微分方程 工程类 统计 人工智能 几何学 化学 控制(管理) 物理 电气工程 基因 经典力学 量子力学 生物化学
作者
Gennady Yu. Kulikov,Maria V. Kulikova
出处
期刊:International Journal of Robust and Nonlinear Control [Wiley]
卷期号:29 (5): 1377-1395 被引量:35
标识
DOI:10.1002/rnc.4440
摘要

Summary This paper presents a case study investigation of numerical robustness of extended Kalman filters used for estimation of stochastic chemical systems with ill‐conditioned measurements. Here, we consider both a batch reactor model and that of a continuously stirred tank reactor. Our purpose is to explore performance of extended Kalman filtering–based state estimators when the measurement model becomes increasingly ill conditioned. In this way, we determine numerically robust methods, which are suitable for accurate estimation of stochastic chemical systems in the presence of round‐off and other disturbances. We examine both conventional filters and their square‐root forms. All these algorithms are implemented by means of the conventional matrix inversion used in their measurement update steps and the Moore‐Penrose pseudoinversion as well. Furthermore, the square‐root filters under investigation are obtained in two ways, namely, by solving square‐root moment differential equations and by square rooting the filter itself. We show that only the square‐root filters grounded in the second approach (with use of stable orthogonal decompositions) are numerically robust and provide the excellent estimation accuracy within all our ill‐conditioned stochastic chemical system scenarios considered in this paper. In addition, the convectional filters and the square‐root variants based on solving moment equations are rather sensitive to round‐off and may be useful and accurate if the chemical system at hand is rather well conditioned.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
remax关注了科研通微信公众号
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
佟佳Red完成签到,获得积分10
2秒前
苗条平萱完成签到,获得积分10
4秒前
4秒前
深情安青应助Iso采纳,获得10
4秒前
4秒前
5秒前
罗伯特骚塞完成签到,获得积分10
5秒前
Mic驳回了打打应助
6秒前
6秒前
6秒前
7秒前
华仔应助zp6666tql采纳,获得10
7秒前
7秒前
龙海完成签到 ,获得积分10
8秒前
佟佳Red发布了新的文献求助10
8秒前
赚钱的君发布了新的文献求助10
8秒前
一丁点可爱完成签到,获得积分10
8秒前
9秒前
9秒前
九三发布了新的文献求助10
9秒前
七木发布了新的文献求助10
10秒前
10秒前
xiaoju发布了新的文献求助10
10秒前
小小发布了新的文献求助10
10秒前
皮皮琪完成签到,获得积分10
10秒前
Sunny完成签到,获得积分10
11秒前
小小明天完成签到,获得积分10
11秒前
Zinc发布了新的文献求助10
11秒前
yy完成签到,获得积分10
11秒前
fahbfafajk完成签到,获得积分10
12秒前
lavande发布了新的文献求助10
13秒前
13秒前
cenghao发布了新的文献求助10
14秒前
俊秀的傲松完成签到,获得积分10
14秒前
科研修沟完成签到 ,获得积分10
16秒前
彭于晏应助七木采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524661
求助须知:如何正确求助?哪些是违规求助? 4615154
关于积分的说明 14546595
捐赠科研通 4553141
什么是DOI,文献DOI怎么找? 2495163
邀请新用户注册赠送积分活动 1475760
关于科研通互助平台的介绍 1447541