Measurements and Model Estimations of Viscosities of the MnO-CaO-SiO 2 -MgO-Al 2 O 3 Melts

热力学 分析化学(期刊)
作者
Baijun Yan,Yixiang Liu,Qifeng Shu,Tengfei Deng,Björn Glaser
出处
期刊:Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science [Springer Nature]
卷期号:50 (1): 376-384 被引量:4
标识
DOI:10.1007/s11663-018-1454-x
摘要

The viscosities of the MnO (0 to 55 mass pct)-CaO-SiO2-MgO (5 mass pct)-Al2O3 (20 mass pct) melts were measured by rotating cylinder method in the temperature range from 1573 K to 1873 K (1300 °C to 1600 °C). The measurements were carried out in the atmosphere of flowing CO/CO2 gas mixture with a volume ratio of 99/1, and molybdenum crucible and spindle were adopted. The results reveal that MnO is a viscosity reducing component, and the effect of MnO is more notable in the melts with higher ratio of CaO to SiO2. For example, in the melts with the mass ratio of CaO to SiO2 equal to 0.6, the addition of 5 mass pct MnO only slightly reduced the viscosities. Comparatively, the addition of 5 mass pct MnO made the viscosities of the melts with the mass ratio of CaO to SiO2 equal to 1.0 and 1.5 decrease remarkably. Based on the measured data, the viscosities estimation model proposed in our previous study was extended to the system containing MnO, and the model parameters were determined. The model can estimate and predict the viscosities of the aluminosilicate melts containing MnO well, and then some iso-viscosity contours of this system were calculated. From the iso-viscosity contours, it can be seen that MnO is almost equivalent to CaO in reducing the viscosities in the melt with high SiO2 content, while with the decrease of the SiO2 content MnO becomes more effective than CaO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chillin发布了新的文献求助10
刚刚
zhui发布了新的文献求助10
刚刚
薪炭林完成签到,获得积分10
1秒前
Rrr发布了新的文献求助10
1秒前
1秒前
SCISSH完成签到 ,获得积分10
1秒前
FEI发布了新的文献求助10
2秒前
科研通AI5应助奔奔采纳,获得10
3秒前
星辰大海应助八八采纳,获得20
3秒前
gaga发布了新的文献求助10
3秒前
木子加y发布了新的文献求助10
3秒前
大大泡泡完成签到,获得积分10
4秒前
852应助zhui采纳,获得10
5秒前
芒果发布了新的文献求助10
5秒前
6秒前
前百年253完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
8秒前
xiaoguai完成签到 ,获得积分10
8秒前
甜蜜晓绿发布了新的文献求助10
10秒前
10秒前
Bruce发布了新的文献求助10
10秒前
11秒前
11秒前
MYhang完成签到,获得积分10
11秒前
wxd发布了新的文献求助10
13秒前
13秒前
哈哈发布了新的文献求助10
14秒前
14秒前
西哈哈发布了新的文献求助10
14秒前
科研通AI5应助lili采纳,获得10
14秒前
郑嘻嘻完成签到,获得积分10
14秒前
14秒前
FEI完成签到,获得积分20
14秒前
16秒前
英姑应助顺利的乐枫采纳,获得10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794