State of charge estimation for LiFePO4 battery via dual extended kalman filter and charging voltage curve

电压 电池(电) 荷电状态 噪音(视频) 控制理论(社会学) 卡尔曼滤波器 恒流 扩展卡尔曼滤波器 滤波器(信号处理) 计算机科学 电子工程 电气工程 工程类 功率(物理) 物理 人工智能 图像(数学) 量子力学 控制(管理)
作者
Limei Wang,Dong Lu,Qiang Liu,Liang Liu,Xiuliang Zhao
出处
期刊:Electrochimica Acta [Elsevier BV]
卷期号:296: 1009-1017 被引量:95
标识
DOI:10.1016/j.electacta.2018.11.156
摘要

The state-of-charge (SOC) estimation method currently ignores the measurement error caused by the Battery Management System (BMS). In this paper, the characteristic of LiFePO4 battery is deeply studied to explore the relationship between open-circuit-voltage (OCV) and SOC. By the analysis of the characteristic of the curve, the results show that the curve does not change with the battery aging by the capacity correction. Meanwhile, the feature of the charging voltage curve is also analyzed. It is pointed out that the ohmic internal resistance and capacity can be obtained by the transformation of the charging voltage curve, which reduces the workload of the dual extended kalman filter (DEKF) algorithm. Based on the DEKF algorithm, the SOC under constant current and dynamic discharge conditions are estimated. The results show that the estimation error is within 3%. The influence of battery voltage and current measurement noise on the estimation accuracy of the SOC is then analyzed. It is found that the measurement noise increases the SOC estimation deviation. Finally, the open circuit voltage in measurement equation is replaced by the charging voltage. And a new method of combining DEKF algorithm and charging voltage curve for SOC estimation is proposed. The results of the experiments under constant current and dynamic discharge conditions show that the proposed method can eliminate the measurement noise and ensure the accuracy of SOC estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿牛哥发布了新的文献求助10
1秒前
香蕉觅云应助东晓采纳,获得10
2秒前
2秒前
姜磊完成签到,获得积分20
3秒前
3秒前
xxddw发布了新的文献求助10
4秒前
4秒前
谢海洋完成签到,获得积分10
5秒前
6秒前
loski发布了新的文献求助10
7秒前
8秒前
xueyu发布了新的文献求助10
9秒前
10秒前
lincy完成签到,获得积分10
11秒前
fqk完成签到,获得积分10
11秒前
12秒前
hanleiharry1发布了新的文献求助10
12秒前
12秒前
14秒前
乐乐应助WN采纳,获得10
16秒前
辛勤的刺猬完成签到 ,获得积分10
20秒前
神奇宝贝发布了新的文献求助10
20秒前
20秒前
丘比特应助sssyq采纳,获得10
21秒前
21秒前
芝麻福福完成签到,获得积分10
21秒前
FYm完成签到,获得积分10
22秒前
心灵美孤菱完成签到,获得积分10
22秒前
田様应助阳光怀亦采纳,获得50
23秒前
阿牛哥关注了科研通微信公众号
24秒前
zsl完成签到,获得积分10
26秒前
27秒前
东晓发布了新的文献求助10
27秒前
娴娴完成签到,获得积分10
28秒前
hanleiharry1发布了新的文献求助10
29秒前
乖猫要努力应助pppp采纳,获得10
29秒前
Akim应助坚强的严青采纳,获得10
29秒前
30秒前
30秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174