We report the wavelength tuning, linewidth narrowing and power enhancement of a continuous-wave intracavity Raman laser by incorporating solid etalons in the high-Q fundamental resonator. With a-cut Nd:GdVO4 and a-cut BaWO4 serving as the laser and Raman crystals respectively, tilting of a 50 μm-thick etalon in the high-Q fundamental cavity enabled the fundamental to be tuned from 1061.00 nm to 1065.20 nm. This gave rise to Stokes output which was tunable from 1176.46 nm to 1181.63 nm whilst the narrowed fundamental linewidth resulted in higher effective Raman gain and as a consequence enhanced output power, as well as the narrow-linewidth Stokes output. Frequency-doubling of the Stokes field resulted in yellow output tunable from 588.23 nm to 590.81 nm, which covers the guide star wavelength of 589.16 nm.