电容器
人工神经网络
MNIST数据库
计算机科学
电子工程
MATLAB语言
铁电性
材料科学
电容感应
能源消耗
香料
电气工程
拓扑(电路)
人工智能
光电子学
工程类
电压
电介质
操作系统
作者
Qilin Zheng,Zongwei Wang,Nanbo Gong,Zhizhen Yu,Cheng Chen,Yimao Cai,Qianqian Huang,Hao Jiang,Qiangfei Xia,Ru Huang
出处
期刊:IEEE Electron Device Letters
[Institute of Electrical and Electronics Engineers]
日期:2019-08-01
卷期号:40 (8): 1309-1312
被引量:41
标识
DOI:10.1109/led.2019.2921737
摘要
We propose an electronic synapse based on an Al: HfO 2 metal-ferroelectric-metal (MFM) capacitor with multi-level characteristics. The device demonstrates excellent multilevel behavior, linearity, weight update symmetry, and low static power consumption. Furthermore, an artificial neural network (ANN) based on this capacitor is built and evaluated through SPICE and MATLAB simulations. The performance indicates that more than 78% accuracy and nJ/ms dynamic speed-energy efficiency in recognizing the standard MNIST handwritten digits are achieved, showing the capability of high-density integration and low energy consumption of the capacitive ANNs.
科研通智能强力驱动
Strongly Powered by AbleSci AI