已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diffusion induced graph representation learning

计算机科学 理论计算机科学 图形 电压图 人工智能 折线图
作者
Fuzhen Li,Zhenfeng Zhu,Xingxing Zhang,Jian Cheng,Yao Zhao
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:360: 220-229 被引量:7
标识
DOI:10.1016/j.neucom.2019.06.012
摘要

Nowadays, graph representation learning has aroused a lot of research interest, which aims to learn the latent low-dimensional representations of graph nodes, while preserving the graph structure. Based on the local smooth assumption, some existing methods have achieved significant success. However, although the structure information of data has been taken into consideration, these models fail to capture enough connectivity pattern such as high-order connections. To alleviate this issue, we propose a Graph Diffusion Network (GDN) that can dynamically preserve local and global consistency of graph. More specifically, Graph Diffusion Auto-encoder is utilized as the main framework in GDN to nonlinearly maintain global information volume. Different from simple auto-encoders, the forward propagation in our model is conducted through Graph Diffusion System which can guide the random walk of information flow to sense the high-order local relationships on graph. Furthermore, to discover a customized graph structure that reveals the similarities between nodes, the connection relationship between nodes are refined by learned metrics with the preservation of scale-free property. By the dynamically self-refining on the graph structure, it can be promoted towards learning the intrinsic node representations in a progressive way. Experimental results on node classification tasks demonstrate the effectiveness of the proposed GDN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
吴海娇发布了新的文献求助10
3秒前
4秒前
香蕉觅云应助RC_Wang采纳,获得10
4秒前
4秒前
ionicliquids发布了新的文献求助10
5秒前
Hunter完成签到,获得积分10
6秒前
6秒前
研友_VZG7GZ应助风清扬采纳,获得10
7秒前
在水一方应助absorb采纳,获得10
8秒前
8秒前
大个应助MEIMEI采纳,获得10
9秒前
9秒前
10秒前
Hunter发布了新的文献求助10
11秒前
九思发布了新的文献求助10
12秒前
13秒前
minya完成签到,获得积分10
13秒前
默默洋葱发布了新的文献求助10
14秒前
15秒前
17秒前
白樱恋曲发布了新的文献求助10
19秒前
19秒前
Orange应助俊逸的无心采纳,获得10
21秒前
在水一方应助学习。。采纳,获得10
23秒前
24秒前
不懈奋进应助风清扬采纳,获得30
27秒前
xrzsxiaoli发布了新的文献求助10
28秒前
哈哈哈完成签到,获得积分10
30秒前
飞舞伤寒发布了新的文献求助10
30秒前
orixero应助小狗采纳,获得10
33秒前
我是老大应助aa采纳,获得10
33秒前
foreverchoi发布了新的文献求助10
36秒前
英姑应助WYF采纳,获得10
38秒前
Jasper应助虚幻友瑶采纳,获得10
38秒前
无奈的翅膀完成签到 ,获得积分10
41秒前
44秒前
FrozNineTivus发布了新的文献求助10
50秒前
天天快乐应助hjkk采纳,获得10
50秒前
科研通AI2S应助fairy采纳,获得10
53秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959900
求助须知:如何正确求助?哪些是违规求助? 3506106
关于积分的说明 11127978
捐赠科研通 3238061
什么是DOI,文献DOI怎么找? 1789483
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803021