A coarse-to-fine decomposing strategy of VMD for extraction of weak repetitive transients in fault diagnosis of rotating machines

算法 计算机科学 系列(地层学) 瞬态(计算机编程) 噪音(视频) 控制理论(社会学) 模式(计算机接口) 人工智能 生物 操作系统 图像(数学) 古生物学 控制(管理)
作者
Xingxing Jiang,Jun Wang,Juanjuan Shi,Changqing Shen,Weiguo Huang,Zhongkui Zhu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:116: 668-692 被引量:174
标识
DOI:10.1016/j.ymssp.2018.07.014
摘要

Variational Mode Decomposition (VMD) has attracted much attention and been used to analyze different kinds of signals, such as mechanical signals, medical data, and financial time series, etc. However, the VMD is still confronted with some dilemmas during the applications, including the determination of the number of the decomposed modes, the selection of the balance parameter, and so on. To address these problems of the VMD, a coarse-to-fine decomposing strategy is proposed for weak fault detection of rotating machines in this paper. Firstly, through extensive numerical simulations, the characteristics of the relative bandwidths of the decomposed modes are given with the change of the balance parameter and the number of the decomposed modes. Then, motivated by the bandwidth characteristics, the rationalities and advantages of iterative decomposition of the VMD and the fine adjustment of the balance parameter are discussed in detail, respectively. Subsequently, the new coarse-to-fine decomposing strategy of the VMD is developed to obtain the optimal mode and extract the weak repetitive transients of rotating machines. The analysis results of the simulated signals and the experimental signals measured from two run-to-failure cases show that the proposed method can well-detect the weak repetitive transients in the signals with heavy noise and overcome the drawbacks of the original VMD. The superiority of the proposed method for faint repetitive transient detection is also demonstrated by comparing with the existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
4秒前
4秒前
乐观寻雪发布了新的文献求助10
4秒前
fjljylm发布了新的文献求助10
5秒前
科研通AI2S应助单薄天蓉采纳,获得20
6秒前
SYLH应助洋洋采纳,获得10
6秒前
啾啾发布了新的文献求助20
6秒前
万能图书馆应助周周采纳,获得10
7秒前
10秒前
yar应助心房子采纳,获得10
12秒前
13秒前
14秒前
吕洺旭完成签到,获得积分10
14秒前
嗯很好完成签到,获得积分10
17秒前
17秒前
板凳儿cc发布了新的文献求助10
18秒前
归尘应助张达采纳,获得10
18秒前
无花果应助学习要认真喽采纳,获得10
19秒前
19秒前
鸭子完成签到,获得积分10
23秒前
懵懂的戎发布了新的文献求助10
23秒前
caicifeng发布了新的文献求助10
24秒前
Jiangnj发布了新的文献求助10
26秒前
26秒前
无餍应助czz采纳,获得10
30秒前
30秒前
31秒前
31秒前
明理的糖豆完成签到,获得积分10
31秒前
666完成签到,获得积分10
31秒前
上岸发布了新的文献求助10
31秒前
32秒前
33秒前
JFH应助Bolerlee采纳,获得10
34秒前
35秒前
666发布了新的文献求助10
35秒前
Jiangnj完成签到,获得积分10
35秒前
菠萝蜜完成签到 ,获得积分10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465336
求助须知:如何正确求助?哪些是违规求助? 3058502
关于积分的说明 9061839
捐赠科研通 2748797
什么是DOI,文献DOI怎么找? 1508157
科研通“疑难数据库(出版商)”最低求助积分说明 696806
邀请新用户注册赠送积分活动 696476