重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Conversion of carbon dioxide gas to hydrocarbon fuels by electrolysis in molten salts

碳氢化合物 化学 电解 化石燃料 熔盐 二氧化碳 碳纤维 氧化物 无机化学 催化作用 甲烷氧化偶联 甲烷 氧气 化学工程 废物管理 有机化学 材料科学 电极 物理化学 复合数 工程类 电解质 复合材料
作者
Ossama Al-Juboori
链接
摘要

Using fossil fuels in power generation has not been considered a serious issue until recent justification of the depletion of fossil resources in addition to the rising atmospheric temperature as a result of increasing CO2 emission from fossil fuel consumption. Technologies that can absorb CO2 from the emissions and, more substantially, convert CO2 economically into useful products, e.g. materials or fuels, with lower carbon intensity are urgently needed and more desirable than simply storing the gas underground. Performing such conversion at high temperatures (200-600 oC) can offer both thermodynamic and kinetic advantages. Molten salts are ideal media for high temperature reactions but their use for the conversion of CO2 and H2O to beneficial products has not yet been examined properly. Thus, this research aims to investigate the feasibility of producing hydrocarbons by the electrochemical reduction of CO2 and H2O (steam) in molten salts at the atmospheric pressure. Two different mechanisms were suggested in literature for hydrocarbon formation after the co-electrolysis of CO2 and H2O to CO or C (carbon) and H2 in molten salts. The first one is the partial oxidation of CH4 that is produced feasibly in molten salts (e.g. C+2H2=CH4). Due to the sufficient availability of oxide ions (O2-) in molten salts, where the partially reduced species of oxygen (O2-, O22-) are obtained, the produced CH4 can be transferred to C2 and other hydrocarbons by the catalytic oxidative coupling in liquid phase. However, there is a possibility of CH4 reaction with O2 to CO2 and H2O. The second mechanism is the direct reaction of carbon with atomic hydrogen adsorbed primarily on the cathode producing different hydrocarbons. However, some other studies detected CH4 attached with slight amounts of long-chain hydrocarbons in the cathodic gas product during the direct electrolysis of molten carbonates mixed with hydroxides. The electrolyser used in this work resembled that for CO2 reduction to CO in lithium containing molten carbonates at 900 oC using a cell with partitioned cathode and anode compartments. However, in addition to the ternary molten carbonates (Li2CO3-Na2CO3-K2CO3) of (43.5:31.5:25 mol%), this work also studied the molten chloride salts of KCl-LiCl of (41:59 mol%) and molten hydroxides of LiOH-NaOH (27:73 mol%) and KOH-NaOH (50:50 mol%). The electrolyser was employed at different temperatures (220-600 oC) depending on the molten salt applied. Various cathodic gases were produced during the electrolysis as confirmed by gas chromatography. At the specified temperatures in this work, olefin hydrocarbon species between (C2-C5) rather than paraffins were found (as the reaction of CO with H2 is feasible) by a total production rate of 0.06 mmol/h of the whole product associated with H2 and CO in molten carbonate electrolysis at 1.5 V and 425 oC under a feed gas of 15.6 molar ratio of CO2/H2O. The priority of olefin formation can be confirmed also by the mechanism of partial oxidation of CH4. The summation of current efficiencies for different cathodic products was close to 100%. The CH4 gas was the predominant hydrocarbon fuel produced during the electrolysis in molten hydroxide in general. No significant indication of hydrocarbon formation was found in the molten chlorides from CO2 reduction or conversion even at 1.3 bar of CO2. The effect of the molten salt temperature, applied electrolysis voltage and the CO2/H2O ratio of the feed gas were also examined during the electrolysis in molten carbonates and hydroxides. By increasing the electrolysis temperature from 425 oC to 500 oC, the number of carbon atoms in the hydrocarbon species produced in the cathodic gas rose to 7 (C7H16) with a production rate of 1.5 μmol/cm2.h at a CO2/H2O ratio of 9.2 increasing the average molecular weight of the product and thus the calorific value. However, the hydrocarbon fuel content in the cathodic gas product in general was found to be higher in the case of high inlet gas CO2 content (CO2/H2O=15.6) by 18% at 425 oC and 41% 500 oC which can be considered as the optimum condition for hydrocarbon formation in this research. Due to the prospective carbon formation, the electrolysis to produce hydrocarbon in molten carbonates was more feasible at 1.5 V than that performed at 2 V. In molten hydroxide case, the CH4 production rate increased when the applied voltage was increased from 2.0 to 3.0 V despite the reduced current efficiencies. Because the electrolytic conversion can be very fast and achieved without using any catalyst, such as the precious metals used in other CO2 reduction routes in water, the results reported in this thesis are promising and encouraging for further fundamental investigation and technological development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助陈赛赛采纳,获得10
1秒前
bkagyin应助没烦恼小婷采纳,获得10
1秒前
2秒前
道阻且长发布了新的文献求助10
3秒前
朴实的小懒虫完成签到,获得积分10
3秒前
3秒前
4秒前
Steve发布了新的文献求助10
4秒前
上官若男应助nnnaaaa采纳,获得10
5秒前
科研通AI6应助华国锋采纳,获得20
5秒前
马伊发布了新的文献求助10
5秒前
刚刚好发布了新的文献求助10
5秒前
合适的猎豹完成签到,获得积分10
6秒前
yz完成签到,获得积分10
6秒前
沐晨浠完成签到,获得积分10
6秒前
CiCi完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
隐形萃发布了新的文献求助10
7秒前
xzy998应助FN_09采纳,获得10
7秒前
虚心的皓轩完成签到 ,获得积分10
7秒前
WWWWWll发布了新的文献求助30
8秒前
8秒前
英俊的铭应助沐阳d采纳,获得10
8秒前
8秒前
jin完成签到,获得积分10
9秒前
无花果应助王王采纳,获得10
9秒前
犹豫大侠完成签到,获得积分10
9秒前
Acerie完成签到,获得积分10
9秒前
完美的八宝粥完成签到,获得积分20
10秒前
dyd发布了新的文献求助10
10秒前
genomed应助石头采纳,获得10
10秒前
充电宝应助sci大户采纳,获得10
10秒前
10秒前
你猜完成签到,获得积分10
11秒前
11秒前
梵强斯完成签到,获得积分10
11秒前
领导范儿应助ivy66x采纳,获得10
11秒前
坦率灵槐发布了新的文献求助10
11秒前
hetao发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466380
求助须知:如何正确求助?哪些是违规求助? 4570254
关于积分的说明 14324125
捐赠科研通 4496749
什么是DOI,文献DOI怎么找? 2463571
邀请新用户注册赠送积分活动 1452461
关于科研通互助平台的介绍 1427543