计算机科学
期限(时间)
卷积神经网络
交通生成模型
数据挖掘
浮动车数据
人工智能
实时计算
交通拥挤
工程类
运输工程
量子力学
物理
作者
Zhixiang He,Chi-Yin Chow,Jia-Dong Zhang
标识
DOI:10.1109/mdm.2019.00-53
摘要
As many location-based applications provide services for users based on traffic conditions, an accurate traffic prediction model is very significant, particularly for long-term traffic predictions (e.g., one week in advance). As far, long-term traffic predictions are still very challenging due to the dynamic nature of traffic. In this paper, we propose a model, called Spatio-Temporal Convolutional Neural Network (STCNN) based on convolutional long short-term memory units to address this challenge. STCNN aims to learn the spatio-temporal correlations from historical traffic data for long-term traffic predictions. Specifically, STCNN captures the general spatio-temporal traffic dependencies and the periodic traffic pattern. Further, STCNN integrates both traffic dependencies and traffic patterns to predict the long-term traffic. Finally, we conduct extensive experiments to evaluate STCNN on two real-world traffic datasets. Experimental results show that STCNN is significantly better than other state-of-the-art models.
科研通智能强力驱动
Strongly Powered by AbleSci AI