A BCI based visual-haptic neurofeedback training improves cortical activations and classification performance during motor imagery

脑-机接口 神经反射 运动表象 脑电图 触觉技术 计算机科学 β节律 感觉运动节律 人工智能 心理学 神经科学
作者
Zhongpeng Wang,Yijie Zhou,Long Chen,Bin Gu,Shuang Liu,Minpeng Xu,Hongzhi Qi,Feng He,Dong Ming
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:16 (6): 066012-066012 被引量:52
标识
DOI:10.1088/1741-2552/ab377d
摘要

Objective. We proposed a brain–computer interface (BCI) based visual-haptic neurofeedback training (NFT) by incorporating synchronous visual scene and proprioceptive electrical stimulation feedback. The goal of this work was to improve sensorimotor cortical activations and classification performance during motor imagery (MI). In addition, their correlations and brain network patterns were also investigated respectively. Approach. 64-channel electroencephalographic (EEG) data were recorded in nineteen healthy subjects during MI before and after NFT. During NFT sessions, the synchronous visual-haptic feedbacks were driven by real-time lateralized relative event-related desynchronization (lrERD). Main results. By comparison between previous and posterior control sessions, the cortical activations measured by multi-band (i.e. alpha_1: 8–10 Hz, alpha_2: 11–13 Hz, beta_1: 15–20 Hz and beta_2: 22–28 Hz) absolute ERD powers and lrERD patterns were significantly enhanced after the NFT. The classification performance was also significantly improved, achieving a ~9% improvement and reaching ~85% in mean classification accuracy from a relatively poor performance. Additionally, there were significant correlations between lrERD patterns and classification accuracies. The partial directed coherence based functional connectivity (FC) networks covering the sensorimotor area also showed an increase after the NFT. Significance. These findings validate the feasibility of our proposed NFT to improve sensorimotor cortical activations and BCI performance during motor imagery. And it is promising to optimize conventional NFT manner and evaluate the effectiveness of motor training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
maox1aoxin应助科研通管家采纳,获得30
刚刚
无花果应助科研通管家采纳,获得10
1秒前
11完成签到,获得积分10
1秒前
1秒前
1秒前
时尚的书易给时尚的书易的求助进行了留言
1秒前
南北完成签到,获得积分10
2秒前
2秒前
2秒前
MADKAI发布了新的文献求助20
2秒前
xiaoli完成签到,获得积分10
3秒前
清浅完成签到,获得积分10
3秒前
赘婿应助深海soda采纳,获得10
3秒前
WJM完成签到,获得积分10
3秒前
小星星完成签到,获得积分10
3秒前
啵乐乐发布了新的文献求助10
3秒前
爆米花应助瘦瘦白昼采纳,获得10
3秒前
wintercyan发布了新的文献求助20
3秒前
大雁高飞出不胜寒完成签到,获得积分10
4秒前
PSCs发布了新的文献求助10
4秒前
QWJ完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
zxy完成签到,获得积分10
6秒前
sober完成签到,获得积分10
6秒前
6秒前
mmknnk完成签到,获得积分20
6秒前
cc2064完成签到 ,获得积分10
6秒前
调皮冰旋发布了新的文献求助10
7秒前
西哈哈完成签到,获得积分20
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678