A BCI based visual-haptic neurofeedback training improves cortical activations and classification performance during motor imagery

脑-机接口 神经反射 运动表象 脑电图 触觉技术 计算机科学 β节律 感觉运动节律 人工智能 心理学 神经科学
作者
Zhongpeng Wang,Yijie Zhou,Long Chen,Bin Gu,Shuang Liu,Minpeng Xu,Hongzhi Qi,Feng He,Dong Ming
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:16 (6): 066012-066012 被引量:52
标识
DOI:10.1088/1741-2552/ab377d
摘要

Objective. We proposed a brain–computer interface (BCI) based visual-haptic neurofeedback training (NFT) by incorporating synchronous visual scene and proprioceptive electrical stimulation feedback. The goal of this work was to improve sensorimotor cortical activations and classification performance during motor imagery (MI). In addition, their correlations and brain network patterns were also investigated respectively. Approach. 64-channel electroencephalographic (EEG) data were recorded in nineteen healthy subjects during MI before and after NFT. During NFT sessions, the synchronous visual-haptic feedbacks were driven by real-time lateralized relative event-related desynchronization (lrERD). Main results. By comparison between previous and posterior control sessions, the cortical activations measured by multi-band (i.e. alpha_1: 8–10 Hz, alpha_2: 11–13 Hz, beta_1: 15–20 Hz and beta_2: 22–28 Hz) absolute ERD powers and lrERD patterns were significantly enhanced after the NFT. The classification performance was also significantly improved, achieving a ~9% improvement and reaching ~85% in mean classification accuracy from a relatively poor performance. Additionally, there were significant correlations between lrERD patterns and classification accuracies. The partial directed coherence based functional connectivity (FC) networks covering the sensorimotor area also showed an increase after the NFT. Significance. These findings validate the feasibility of our proposed NFT to improve sensorimotor cortical activations and BCI performance during motor imagery. And it is promising to optimize conventional NFT manner and evaluate the effectiveness of motor training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北山完成签到,获得积分10
刚刚
周一一完成签到 ,获得积分10
1秒前
蔺亦丝发布了新的文献求助20
1秒前
willing3337发布了新的文献求助10
1秒前
nicheng完成签到 ,获得积分0
2秒前
陶1122完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
5秒前
慕青应助hokin33采纳,获得10
6秒前
6秒前
zho发布了新的文献求助100
7秒前
8秒前
jw完成签到,获得积分10
8秒前
简洁应助坦率的秋烟采纳,获得20
9秒前
超帅路灯发布了新的文献求助10
9秒前
chens发布了新的文献求助10
10秒前
10秒前
11秒前
麻果发布了新的文献求助10
11秒前
14秒前
15秒前
哆啦顺利毕业完成签到 ,获得积分10
15秒前
18秒前
ssk发布了新的文献求助10
19秒前
22秒前
小太阳红红火火完成签到,获得积分10
22秒前
24秒前
24秒前
机智的瑾瑜完成签到,获得积分20
26秒前
livra1058完成签到,获得积分10
26秒前
xianglily完成签到 ,获得积分10
26秒前
汉堡包应助CYL07采纳,获得10
26秒前
科研小趴菜完成签到,获得积分10
27秒前
cc发布了新的文献求助10
29秒前
vsoar完成签到,获得积分10
29秒前
Nature完成签到 ,获得积分10
29秒前
CodeCraft应助不卖星星采纳,获得10
29秒前
towanda完成签到,获得积分10
29秒前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122784
求助须知:如何正确求助?哪些是违规求助? 2773110
关于积分的说明 7716741
捐赠科研通 2428714
什么是DOI,文献DOI怎么找? 1289917
科研通“疑难数据库(出版商)”最低求助积分说明 621637
版权声明 600185