Seismic data interpolation with conditional generative adversarial network in time and frequency domain

插值(计算机图形学) 计算机科学 深度学习 领域(数学分析) 频域 生成语法 对抗制 生成对抗网络 质量(理念) 数据挖掘 地质学 人工智能 地震学 数学 计算机视觉 图像(数学) 哲学 数学分析 认识论
作者
Dekuan Chang,Wei Yang,Xiaoju Yong,H. S Li
标识
DOI:10.1190/segam2019-3210118.1
摘要

PreviousNext No AccessSEG Technical Program Expanded Abstracts 2019Seismic data interpolation with conditional generative adversarial network in time and frequency domainAuthors: D. K. ChangW. Y. YangX. S. YongH. S LiD. K. ChangResearch institute of petroleum exploration & development-NWGI, PetroChinaSearch for more papers by this author, W. Y. YangResearch institute of petroleum exploration & development-NWGI, PetroChinaSearch for more papers by this author, X. S. YongResearch institute of petroleum exploration & development-NWGI, PetroChinaSearch for more papers by this author, and H. S LiResearch institute of petroleum exploration & development-NWGI, PetroChinaSearch for more papers by this authorhttps://doi.org/10.1190/segam2019-3210118.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractSeismic traces are missing due to limitations in acquisition conditions, bad sectors, etc., which seriously affects the quality of seismic dataset. Seismic data interpolation technology is an effective way to reconstruct missing seismic traces and improve the quality of seismic dataset. In this paper, we propose a method for seismic data interpolation by using the conditional generative adversarial network in time and frequency domain (TF-CGAN). This network consists of two parts, a generation network and a discrimination network. Seismic data and the FFT-transformed data are used for training of the network model to realize dual-domain feature learning. Experimental results show that the TF-CGAN can simultaneously discriminate the mathematical distribution of the interpolated seismic traces in the time and frequency domains, which makes the interpolated seismic traces have the same characteristics with the complete seismic dataset in time and frequency domain.Presentation Date: Wednesday, September 18, 2019Session Start Time: 1:50 PMPresentation Time: 1:50 PMLocation: Poster Station 2Presentation Type: PosterKeywords: artificial intelligence, data reconstruction, interpolation, neural networks, processingPermalink: https://doi.org/10.1190/segam2019-3210118.1FiguresReferencesRelatedDetailsCited byGenerative adversarial networks review in earthquake-related engineering fields28 February 2023 | Bulletin of Earthquake Engineering, Vol. 10Unsupervised deep learning for 3D interpolation of highly incomplete dataOmar M. Saad, Sergey Fomel, Raymond Abma, and Yangkang Chen13 December 2022 | GEOPHYSICS, Vol. 88, No. 1Regeneration-Constrained Self-Supervised Seismic Data InterpolationIEEE Transactions on Geoscience and Remote Sensing, Vol. 61Big gaps seismic data interpolation using conditional Wasserstein generative adversarial networks with gradient penalty26 October 2021 | Exploration Geophysics, Vol. 53, No. 5Improved Anomalous Amplitude Attenuation Method Based on Deep Neural NetworksIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Attention and Hybrid Loss Guided Deep Learning for Consecutively Missing Seismic Data ReconstructionIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Self-Supervised Learning for Efficient Antialiasing Seismic Data InterpolationIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Seismic data interpolation using a POCS-guided deep image priorMin Jun Park, Joseph Jennings, Bob Clapp, and Biondo Biondi30 September 2020 SEG Technical Program Expanded Abstracts 2019ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2019 Pages: 5407 publication data© 2019 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 10 Aug 2019 CITATION INFORMATION D. K. Chang, W. Y. Yang, X. S. Yong, and H. S Li, (2019), "Seismic data interpolation with conditional generative adversarial network in time and frequency domain," SEG Technical Program Expanded Abstracts : 2589-2593. https://doi.org/10.1190/segam2019-3210118.1 Plain-Language Summary Keywordsartificial intelligencedata reconstructioninterpolationneural networksprocessingPDF DownloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无名完成签到,获得积分10
刚刚
王九八发布了新的文献求助10
刚刚
老陈发布了新的文献求助10
1秒前
我是老大应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
背后海亦应助科研通管家采纳,获得20
2秒前
somin应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
boiqn发布了新的文献求助10
3秒前
4秒前
时尚飞阳完成签到,获得积分10
5秒前
害怕的鹏飞完成签到,获得积分10
5秒前
6秒前
orangetwo完成签到,获得积分10
6秒前
明理海菡发布了新的文献求助10
6秒前
刘生完成签到,获得积分10
7秒前
7秒前
Web23发布了新的文献求助10
8秒前
9秒前
daheeeee完成签到,获得积分10
9秒前
之贻完成签到,获得积分10
10秒前
yybaby完成签到,获得积分10
10秒前
boiqn完成签到,获得积分10
10秒前
谢灵运发布了新的文献求助50
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118