亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Seismic data interpolation with conditional generative adversarial network in time and frequency domain

插值(计算机图形学) 计算机科学 深度学习 领域(数学分析) 频域 生成语法 对抗制 生成对抗网络 质量(理念) 数据挖掘 地质学 人工智能 地震学 数学 计算机视觉 图像(数学) 哲学 数学分析 认识论
作者
Dekuan Chang,Wei Yang,Xiaoju Yong,H. S Li
标识
DOI:10.1190/segam2019-3210118.1
摘要

PreviousNext No AccessSEG Technical Program Expanded Abstracts 2019Seismic data interpolation with conditional generative adversarial network in time and frequency domainAuthors: D. K. ChangW. Y. YangX. S. YongH. S LiD. K. ChangResearch institute of petroleum exploration & development-NWGI, PetroChinaSearch for more papers by this author, W. Y. YangResearch institute of petroleum exploration & development-NWGI, PetroChinaSearch for more papers by this author, X. S. YongResearch institute of petroleum exploration & development-NWGI, PetroChinaSearch for more papers by this author, and H. S LiResearch institute of petroleum exploration & development-NWGI, PetroChinaSearch for more papers by this authorhttps://doi.org/10.1190/segam2019-3210118.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractSeismic traces are missing due to limitations in acquisition conditions, bad sectors, etc., which seriously affects the quality of seismic dataset. Seismic data interpolation technology is an effective way to reconstruct missing seismic traces and improve the quality of seismic dataset. In this paper, we propose a method for seismic data interpolation by using the conditional generative adversarial network in time and frequency domain (TF-CGAN). This network consists of two parts, a generation network and a discrimination network. Seismic data and the FFT-transformed data are used for training of the network model to realize dual-domain feature learning. Experimental results show that the TF-CGAN can simultaneously discriminate the mathematical distribution of the interpolated seismic traces in the time and frequency domains, which makes the interpolated seismic traces have the same characteristics with the complete seismic dataset in time and frequency domain.Presentation Date: Wednesday, September 18, 2019Session Start Time: 1:50 PMPresentation Time: 1:50 PMLocation: Poster Station 2Presentation Type: PosterKeywords: artificial intelligence, data reconstruction, interpolation, neural networks, processingPermalink: https://doi.org/10.1190/segam2019-3210118.1FiguresReferencesRelatedDetailsCited byGenerative adversarial networks review in earthquake-related engineering fields28 February 2023 | Bulletin of Earthquake Engineering, Vol. 10Unsupervised deep learning for 3D interpolation of highly incomplete dataOmar M. Saad, Sergey Fomel, Raymond Abma, and Yangkang Chen13 December 2022 | GEOPHYSICS, Vol. 88, No. 1Regeneration-Constrained Self-Supervised Seismic Data InterpolationIEEE Transactions on Geoscience and Remote Sensing, Vol. 61Big gaps seismic data interpolation using conditional Wasserstein generative adversarial networks with gradient penalty26 October 2021 | Exploration Geophysics, Vol. 53, No. 5Improved Anomalous Amplitude Attenuation Method Based on Deep Neural NetworksIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Attention and Hybrid Loss Guided Deep Learning for Consecutively Missing Seismic Data ReconstructionIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Self-Supervised Learning for Efficient Antialiasing Seismic Data InterpolationIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Seismic data interpolation using a POCS-guided deep image priorMin Jun Park, Joseph Jennings, Bob Clapp, and Biondo Biondi30 September 2020 SEG Technical Program Expanded Abstracts 2019ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2019 Pages: 5407 publication data© 2019 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 10 Aug 2019 CITATION INFORMATION D. K. Chang, W. Y. Yang, X. S. Yong, and H. S Li, (2019), "Seismic data interpolation with conditional generative adversarial network in time and frequency domain," SEG Technical Program Expanded Abstracts : 2589-2593. https://doi.org/10.1190/segam2019-3210118.1 Plain-Language Summary Keywordsartificial intelligencedata reconstructioninterpolationneural networksprocessingPDF DownloadLoading ...

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哇samm完成签到,获得积分10
刚刚
桐桐应助家家采纳,获得10
2秒前
微笑高山完成签到 ,获得积分10
9秒前
Mottri发布了新的文献求助10
9秒前
9527z完成签到,获得积分10
12秒前
16秒前
等待半烟发布了新的文献求助10
21秒前
24秒前
等待半烟完成签到,获得积分10
29秒前
研友_VZG7GZ应助科研通管家采纳,获得10
31秒前
50秒前
英俊的铭应助benbenca采纳,获得30
1分钟前
guoduan完成签到,获得积分10
1分钟前
1分钟前
SciGPT应助优美雨筠采纳,获得10
1分钟前
1分钟前
学术zha发布了新的文献求助10
1分钟前
俊逸沛菡完成签到 ,获得积分10
1分钟前
1分钟前
优美雨筠发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
慧慧发布了新的文献求助10
1分钟前
归tu发布了新的文献求助10
1分钟前
科研通AI2S应助学术zha采纳,获得10
1分钟前
Jasper应助归tu采纳,获得10
1分钟前
优美雨筠完成签到,获得积分10
1分钟前
1分钟前
花椒鱼完成签到 ,获得积分10
1分钟前
抽象的脆脆完成签到,获得积分20
1分钟前
科研通AI2S应助李月采纳,获得10
2分钟前
CipherSage应助抽象的脆脆采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
大个应助欢喜怀绿采纳,获得10
2分钟前
吴彦祖发布了新的文献求助10
2分钟前
CryBill完成签到,获得积分10
2分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234526
求助须知:如何正确求助?哪些是违规求助? 2880887
关于积分的说明 8217250
捐赠科研通 2548495
什么是DOI,文献DOI怎么找? 1377775
科研通“疑难数据库(出版商)”最低求助积分说明 647999
邀请新用户注册赠送积分活动 623314