蛋白质稳态
蛋白质组
生物
蛋白质折叠
细胞生物学
老化
蛋白质水解
神经科学
生物信息学
生物化学
遗传学
酶
作者
Mark S. Hipp,Prasad Kasturi,F. Ulrich Hartl
标识
DOI:10.1038/s41580-019-0101-y
摘要
Ageing is a major risk factor for the development of many diseases, prominently including neurodegenerative disorders such as Alzheimer disease and Parkinson disease. A hallmark of many age-related diseases is the dysfunction in protein homeostasis (proteostasis), leading to the accumulation of protein aggregates. In healthy cells, a complex proteostasis network, comprising molecular chaperones and proteolytic machineries and their regulators, operates to ensure the maintenance of proteostasis. These factors coordinate protein synthesis with polypeptide folding, the conservation of protein conformation and protein degradation. However, sustaining proteome balance is a challenging task in the face of various external and endogenous stresses that accumulate during ageing. These stresses lead to the decline of proteostasis network capacity and proteome integrity. The resulting accumulation of misfolded and aggregated proteins affects, in particular, postmitotic cell types such as neurons, manifesting in disease. Recent analyses of proteome-wide changes that occur during ageing inform strategies to improve proteostasis. The possibilities of pharmacological augmentation of the capacity of proteostasis networks hold great promise for delaying the onset of age-related pathologies associated with proteome deterioration and for extending healthspan. Misfolded proteins have a high propensity to form potentially toxic aggregates. Cells employ a complex network of processes, involving chaperones and proteolytic machineries that ensure proper protein folding and remodel or degrade misfolded species and aggregates. This proteostasis network declines with age, which can be linked to human degenerative diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI