Knowledge-based Collaborative Deep Learning for Benign-Malignant Lung Nodule Classification on Chest CT

人工智能 计算机科学 深度学习 水准点(测量) 全国肺筛查试验 肺癌 肺癌筛查 加权 结核(地质) 体素 放射科 模式识别(心理学) 医学 计算机断层摄影术 病理 生物 内科学 古生物学 地理 大地测量学
作者
Yutong Xie,Yong Xia,Jianpeng Zhang,Yang Song,Dagan Feng,Michael Fulham,Weidong Cai
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (4): 991-1004 被引量:413
标识
DOI:10.1109/tmi.2018.2876510
摘要

The accurate identification of malignant lung nodules on chest CT is critical for the early detection of lung cancer, which also offers patients the best chance of cure. Deep learning methods have recently been successfully introduced to computer vision problems, although substantial challenges remain in the detection of malignant nodules due to the lack of large training data sets. In this paper, we propose a multi-view knowledge-based collaborative (MV-KBC) deep model to separate malignant from benign nodules using limited chest CT data. Our model learns 3-D lung nodule characteristics by decomposing a 3-D nodule into nine fixed views. For each view, we construct a knowledge-based collaborative (KBC) submodel, where three types of image patches are designed to fine-tune three pre-trained ResNet-50 networks that characterize the nodules' overall appearance, voxel, and shape heterogeneity, respectively. We jointly use the nine KBC submodels to classify lung nodules with an adaptive weighting scheme learned during the error back propagation, which enables the MV-KBC model to be trained in an end-to-end manner. The penalty loss function is used for better reduction of the false negative rate with a minimal effect on the overall performance of the MV-KBC model. We tested our method on the benchmark LIDC-IDRI data set and compared it to the five state-of-the-art classification approaches. Our results show that the MV-KBC model achieved an accuracy of 91.60% for lung nodule classification with an AUC of 95.70%. These results are markedly superior to the state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Aijh发布了新的文献求助10
刚刚
十八子完成签到,获得积分10
刚刚
哈哈哈哈完成签到,获得积分10
1秒前
如此纠结发布了新的文献求助10
2秒前
上官若男应助张珂采纳,获得10
2秒前
3秒前
jcae123发布了新的文献求助10
3秒前
3秒前
YvonneL发布了新的文献求助10
4秒前
lwh发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
村晓发布了新的文献求助20
5秒前
CodeCraft应助qly采纳,获得10
6秒前
深情安青应助ohh采纳,获得10
7秒前
如此纠结完成签到,获得积分10
7秒前
jcae123完成签到,获得积分10
8秒前
8秒前
lijing123发布了新的文献求助10
9秒前
完美世界应助木头采纳,获得10
9秒前
感性的早晨完成签到 ,获得积分10
9秒前
思源应助无语的诗槐采纳,获得10
9秒前
10秒前
香蕉觅云应助言笑采纳,获得30
12秒前
滕擎发布了新的文献求助10
12秒前
13秒前
阳光的寻琴完成签到,获得积分20
13秒前
YvonneL完成签到,获得积分10
14秒前
14秒前
14秒前
李爱国应助yy采纳,获得10
15秒前
迷路毛豆发布了新的文献求助10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
15秒前
Akim应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490263
求助须知:如何正确求助?哪些是违规求助? 3077255
关于积分的说明 9148229
捐赠科研通 2769499
什么是DOI,文献DOI怎么找? 1519724
邀请新用户注册赠送积分活动 704238
科研通“疑难数据库(出版商)”最低求助积分说明 702113