医学
前列腺癌
前列腺
医学物理学
癌症
肿瘤科
人工智能
机器学习
妇科
内科学
计算机科学
作者
Gregory B. Auffenberg,Khurshid R. Ghani,Shreyas Ramani,Etiowo Usoro,Brian T. Denton,Craig Rogers,Benjamin R. Stockton,David C. Miller,Karandeep Singh
标识
DOI:10.1016/j.eururo.2018.09.050
摘要
Clinical registries provide physicians with a means for making data-driven decisions but few opportunities exist for patients to interact with registry data to help make decisions.We sought to develop a web-based system that uses a prostate cancer (CaP) registry to provide newly diagnosed men with a platform to view predicted treatment decisions based on patients with similar characteristics.The Michigan Urological Surgery Improvement Collaborative (MUSIC) is a quality improvement consortium of urology practices that maintains a prospective registry of men with CaP. We used registry data from 45 MUSIC urology practices from 2015 to 2017 to develop and validate a random forest machine learning model. After fitting the random forest model to a derivation cohort consisting of a random two-thirds sample of patients after stratifying by practice location, we evaluated the model performance in a validation cohort consisting of the remaining one-third of patients using a multiclass area under the curve (AUC) measure and calibration plots.We identified 7543 men diagnosed with CaP, of whom 45% underwent radical prostatectomy, 30% surveillance, 17% radiation therapy, 5.6% androgen deprivation, and 1.8% watchful waiting. The personalized prediction for patients in the validation cohort was highly accurate (AUC 0.81).Using clinical registry data and machine learning methods, we created a web-based platform for patients that generates accurate predictions for most CaP treatments.We have developed and tested a tool to help men newly diagnosed with prostate cancer to view predicted treatment decisions based on similar patients from our registry. We have made this tool available online for patients to use.
科研通智能强力驱动
Strongly Powered by AbleSci AI