The community structure identification for the Chinese merger and acquisition network

模块化(生物学) 聚类系数 群落结构 聚类分析 复杂网络 计算机科学 构造(python库) 透视图(图形) 订单(交换) 业务 产业组织 数据挖掘 数学 人工智能 统计 财务 计算机网络 遗传学 万维网 生物
作者
Xinyu Guo,Kai Yang,Xia Wu,Qiang Guo
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:526: 120897-120897
标识
DOI:10.1016/j.physa.2019.04.133
摘要

The community structures of the mergers and acquisitions (M&As) could bring deeply insight on the company complex system from the viewpoint of macroscopic level. Firstly, we construct the directed merger and acquisition network (MAN) based on the M&A events which deal from 2000 to 2017 initiated by Chinese listed companies, where the nodes represent the companies and the links denote the relationship of M&As. Regarding the fact that the M&A network is a directed network, by using the Infomap algorithm, we investigate the community structures of the M&A network, and find that the network has the clear community structures with the modularity Q=0.8757. Furthermore, we present a parameter η defined as the ratio of the number of companies which belong to the same industry to the total number of companies in the community for analyzing the company industry characteristics within community. The empirical results show that there are a large proportion of companies belonging to one industry for each community, which illustrates that the characteristic of M&As is that M&As generally occur between the same industry within communities. Finally, we calculate the clustering coefficient of directed networks to analyze the clustering properties of the network with the community structures. The clustering coefficient of the network indicates that the number of triangular configuration is very few, which illustrates that the relationship of a company’s neighbors is weak. This work provides insight to structural properties of directed networks based on the M&As from the perspective of complex systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何姗悦完成签到 ,获得积分20
刚刚
讨厌水煮蛋完成签到,获得积分10
刚刚
1秒前
hzhang完成签到,获得积分10
1秒前
自然衣完成签到,获得积分10
1秒前
HP完成签到,获得积分10
1秒前
贴贴完成签到,获得积分10
1秒前
舒心豪英完成签到 ,获得积分10
2秒前
半胱氨酸完成签到,获得积分10
2秒前
2秒前
曦曦完成签到,获得积分10
2秒前
3秒前
今后应助cyn采纳,获得10
3秒前
小美最棒完成签到,获得积分10
3秒前
远山有灯完成签到,获得积分10
4秒前
5秒前
克林沙星发布了新的文献求助50
5秒前
mengwensi完成签到,获得积分10
5秒前
FashionBoy应助山雀采纳,获得10
5秒前
liuqizong123完成签到,获得积分10
6秒前
凪白完成签到,获得积分10
6秒前
HP发布了新的文献求助10
6秒前
又是一年完成签到,获得积分10
6秒前
土亢土亢土完成签到,获得积分0
7秒前
一只生物狗完成签到,获得积分10
8秒前
子车半烟完成签到,获得积分10
8秒前
小虾米发布了新的文献求助10
10秒前
xmhxpz完成签到,获得积分10
10秒前
10秒前
10秒前
开心的谷兰完成签到,获得积分10
12秒前
wind2631完成签到,获得积分10
12秒前
热情若翠完成签到,获得积分10
12秒前
MchemG应助玉玉采纳,获得20
12秒前
12秒前
Sarah完成签到 ,获得积分10
13秒前
健康的代芙完成签到,获得积分10
14秒前
科研通AI2S应助温润如玉坤采纳,获得10
15秒前
玩命的化蛹完成签到,获得积分10
16秒前
hahaha完成签到,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027