Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity

血管平滑肌 表型 细胞外基质 表型转换 表型可塑性 细胞生物学 平滑肌 细胞 生物 神经科学 内分泌学 基因 遗传学
作者
Agne Frismantiene,Maria Philippova,Paul Erné,Thérèse J. Resink
出处
期刊:Cellular Signalling [Elsevier]
卷期号:52: 48-64 被引量:263
标识
DOI:10.1016/j.cellsig.2018.08.019
摘要

Vascular smooth muscle cells (VSMCs) are the major cell type in blood vessels. Unlike many other mature cell types in the adult body, VSMC do not terminally differentiate but retain a remarkable plasticity. Fully differentiated medial VSMCs of mature vessels maintain quiescence and express a range of genes and proteins important for contraction/dilation, which allows them to control systemic and local pressure through the regulation of vascular tone. In response to vascular injury or alterations in local environmental cues, differentiated/contractile VSMCs are capable of switching to a dedifferentiated phenotype characterized by increased proliferation, migration and extracellular matrix synthesis in concert with decreased expression of contractile markers. Imbalanced VSMC plasticity results in maladaptive phenotype alterations that ultimately lead to progression of a variety of VSMC-driven vascular diseases. The nature, extent and consequences of dysregulated VSMC phenotype alterations are diverse, reflecting the numerous environmental cues (e.g. biochemical factors, extracellular matrix components, physical) that prompt VSMC phenotype switching. In spite of decades of efforts to understand cues and processes that normally control VSMC differentiation and their disruption in VSMC-driven disease states, the crucial molecular mechanisms and signalling pathways that shape the VSMC phenotype programme have still not yet been precisely elucidated. In this article we introduce the physiological functions of vascular smooth muscle/VSMCs, outline VSMC-driven cardiovascular diseases and the concept of VSMC phenotype switching, and review molecular mechanisms that play crucial roles in the regulation of VSMC phenotypic plasticity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助zoele采纳,获得10
刚刚
喜欢去公园完成签到,获得积分10
1秒前
鲤鱼问雁完成签到,获得积分10
2秒前
777y完成签到,获得积分10
2秒前
科研通AI2S应助笨笨歌曲采纳,获得10
3秒前
纪外绣完成签到,获得积分10
3秒前
4秒前
weiyy完成签到 ,获得积分10
5秒前
高高平蝶发布了新的文献求助10
5秒前
高大小土豆完成签到 ,获得积分10
5秒前
桐桐应助zoele采纳,获得10
6秒前
啊啊啊啊啊完成签到 ,获得积分10
7秒前
8秒前
cocobear完成签到 ,获得积分10
9秒前
9秒前
整齐南莲完成签到,获得积分10
9秒前
不见高山发布了新的文献求助20
11秒前
幻夣关注了科研通微信公众号
11秒前
12秒前
充电宝应助杜兰特工队采纳,获得10
12秒前
WW发布了新的文献求助10
12秒前
13秒前
内向妙梦发布了新的文献求助10
14秒前
14秒前
14秒前
戴遇好完成签到 ,获得积分0
15秒前
hh完成签到 ,获得积分10
15秒前
15秒前
16秒前
saberLee完成签到,获得积分10
16秒前
果粒橙完成签到 ,获得积分10
17秒前
NINI完成签到 ,获得积分10
17秒前
啊啊啊啊啊关注了科研通微信公众号
17秒前
18秒前
淡淡的航空完成签到,获得积分10
19秒前
稳重孤丝发布了新的文献求助10
19秒前
lily发布了新的文献求助10
20秒前
沉静幻天完成签到,获得积分10
20秒前
ling_lz完成签到,获得积分10
20秒前
番茄炒蛋不要番茄le完成签到,获得积分10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137230
求助须知:如何正确求助?哪些是违规求助? 2788312
关于积分的说明 7785628
捐赠科研通 2444330
什么是DOI,文献DOI怎么找? 1299894
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023