亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lung and Pancreatic Tumor Characterization in the Deep Learning Era: Novel Supervised and Unsupervised Learning Approaches

人工智能 机器学习 计算机科学 深度学习 无监督学习 卷积神经网络 特征学习 半监督学习 多任务学习 监督学习 医学影像学 特征工程 模式识别(心理学) 人工神经网络 任务(项目管理) 经济 管理
作者
Sarfaraz Hussein,Pujan Kandel,Candice W. Bolan,Michael B. Wallace,Ulaş Bağcı
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (8): 1777-1787 被引量:228
标识
DOI:10.1109/tmi.2019.2894349
摘要

Risk stratification (characterization) of tumors from radiology images can be more accurate and faster with computer-aided diagnosis (CAD) tools. Tumor characterization through such tools can also enable non-invasive cancer staging, prognosis, and foster personalized treatment planning as a part of precision medicine. In this papet, we propose both supervised and unsupervised machine learning strategies to improve tumor characterization. Our first approach is based on supervised learning for which we demonstrate significant gains with deep learning algorithms, particularly by utilizing a 3D convolutional neural network and transfer learning. Motivated by the radiologists' interpretations of the scans, we then show how to incorporate task-dependent feature representations into a CAD system via a graph-regularized sparse multi-task learning framework. In the second approach, we explore an unsupervised learning algorithm to address the limited availability of labeled training data, a common problem in medical imaging applications. Inspired by learning from label proportion approaches in computer vision, we propose to use proportion-support vector machine for characterizing tumors. We also seek the answer to the fundamental question about the goodness of "deep features" for unsupervised tumor classification. We evaluate our proposed supervised and unsupervised learning algorithms on two different tumor diagnosis challenges: lung and pancreas with 1018 CT and 171 MRI scans, respectively, and obtain the state-of-the-art sensitivity and specificity results in both problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代的曲奇完成签到 ,获得积分10
1秒前
小马甲应助nsc采纳,获得10
11秒前
Hello应助nsc采纳,获得10
11秒前
万能图书馆应助nsc采纳,获得10
11秒前
华仔应助nsc采纳,获得30
11秒前
CipherSage应助nsc采纳,获得10
11秒前
Jasper应助nsc采纳,获得10
11秒前
在水一方应助nsc采纳,获得10
11秒前
小马甲应助nsc采纳,获得10
11秒前
慕青应助nsc采纳,获得10
11秒前
脑洞疼应助nsc采纳,获得10
11秒前
量子星尘发布了新的文献求助10
29秒前
32秒前
36秒前
孙老师完成签到 ,获得积分10
51秒前
Ava应助nsc采纳,获得10
1分钟前
田様应助nsc采纳,获得10
1分钟前
小蘑菇应助nsc采纳,获得10
1分钟前
Hello应助nsc采纳,获得10
1分钟前
orixero应助nsc采纳,获得10
1分钟前
小二郎应助nsc采纳,获得10
1分钟前
无花果应助nsc采纳,获得10
1分钟前
烟花应助nsc采纳,获得10
1分钟前
JamesPei应助nsc采纳,获得10
1分钟前
科研通AI5应助nsc采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
六六完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957061
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111240
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264