Lung and Pancreatic Tumor Characterization in the Deep Learning Era: Novel Supervised and Unsupervised Learning Approaches

人工智能 机器学习 计算机科学 深度学习 无监督学习 卷积神经网络 特征学习 半监督学习 多任务学习 监督学习 医学影像学 特征工程 模式识别(心理学) 人工神经网络 任务(项目管理) 经济 管理
作者
Sarfaraz Hussein,Pujan Kandel,Candice W. Bolan,Michael B. Wallace,Ulaş Bağcı
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (8): 1777-1787 被引量:228
标识
DOI:10.1109/tmi.2019.2894349
摘要

Risk stratification (characterization) of tumors from radiology images can be more accurate and faster with computer-aided diagnosis (CAD) tools. Tumor characterization through such tools can also enable non-invasive cancer staging, prognosis, and foster personalized treatment planning as a part of precision medicine. In this papet, we propose both supervised and unsupervised machine learning strategies to improve tumor characterization. Our first approach is based on supervised learning for which we demonstrate significant gains with deep learning algorithms, particularly by utilizing a 3D convolutional neural network and transfer learning. Motivated by the radiologists' interpretations of the scans, we then show how to incorporate task-dependent feature representations into a CAD system via a graph-regularized sparse multi-task learning framework. In the second approach, we explore an unsupervised learning algorithm to address the limited availability of labeled training data, a common problem in medical imaging applications. Inspired by learning from label proportion approaches in computer vision, we propose to use proportion-support vector machine for characterizing tumors. We also seek the answer to the fundamental question about the goodness of "deep features" for unsupervised tumor classification. We evaluate our proposed supervised and unsupervised learning algorithms on two different tumor diagnosis challenges: lung and pancreas with 1018 CT and 171 MRI scans, respectively, and obtain the state-of-the-art sensitivity and specificity results in both problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叮叮当当发布了新的文献求助30
1秒前
1秒前
ying完成签到,获得积分10
1秒前
dopamine发布了新的文献求助10
2秒前
麦乐迪应助圆圆采纳,获得10
3秒前
4秒前
幼儿园老大完成签到,获得积分10
4秒前
infe完成签到,获得积分10
4秒前
高高完成签到,获得积分10
4秒前
可爱问寒完成签到 ,获得积分20
5秒前
乘乘完成签到 ,获得积分10
6秒前
Syanyi完成签到 ,获得积分10
6秒前
6秒前
6秒前
领导范儿应助宁阿霜采纳,获得10
8秒前
知名不具发布了新的文献求助10
10秒前
10秒前
10秒前
小二郎应助称心的寄风采纳,获得10
11秒前
荼蘼发布了新的文献求助10
11秒前
吱吱吱完成签到 ,获得积分10
11秒前
Qianwen发布了新的文献求助10
12秒前
VDC应助虚心的芹采纳,获得30
12秒前
12秒前
高兴的又菡完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
linman发布了新的文献求助10
14秒前
马兵发布了新的文献求助10
15秒前
Saya发布了新的文献求助10
15秒前
LL发布了新的文献求助10
15秒前
我爱睡觉完成签到 ,获得积分10
16秒前
yenom发布了新的文献求助10
16秒前
乐乐应助HJJHJH采纳,获得10
17秒前
顾矜应助科研小畅采纳,获得10
17秒前
jiao发布了新的文献求助10
18秒前
孤独的枫叶完成签到,获得积分10
18秒前
18秒前
情怀应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577935
求助须知:如何正确求助?哪些是违规求助? 3997037
关于积分的说明 12374100
捐赠科研通 3671042
什么是DOI,文献DOI怎么找? 2023214
邀请新用户注册赠送积分活动 1057205
科研通“疑难数据库(出版商)”最低求助积分说明 944176