Relationships of groundwater quality and associated health risks with land use/land cover patterns: A case study in a loess area, Northwest China

黄土 地下水 环境科学 土地覆盖 土地利用 水质 草原 水文学(农业) 农用地 水资源管理 地质学 生态学 生物 地貌学 岩土工程
作者
Song He,Jianhua Wu
出处
期刊:Human and Ecological Risk Assessment [Informa]
卷期号:25 (1-2): 354-373 被引量:108
标识
DOI:10.1080/10807039.2019.1570463
摘要

This study investigated the relationships of groundwater quality and associated health risks with land use/land cover (LULC) patterns. Twenty-nine groundwater samples were collected from a loess area in northwest China, and analyzed for twelve water quality parameters. Water quality was assessed using entropy water quality index (EWQI) and the non-carcinogenic risks caused by NO3− and Cr6+, and the carcinogenic risks caused by Cr6+ through drinking water exposure pathway were considered. The LULC information was extracted from remote sensing image data and classified using a neural net classification method. A curved streamline searchlight shaped model (CS-SLM) was proposed and applied to determine the domain around a well where LULC influences well water quality. Kendall’s tau (τ) was calculated to determine the relationship of water quality and associated health risks with LULC. As suggested by EWQI, 51.72% of the groundwater samples were unacceptable for drinking proposes. The main LULC types in the study area are loess, forest, grassland, agricultural land and urban land, and the groundwater quality is influenced by forest, grassland and loess. Non-carcinogenic risks caused by NO3− and Cr6+ in the groundwater are related to grassland, loess and urban land, and carcinogenic risks caused by Cr6+ are associated with loess and urban land.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
曾经以亦完成签到,获得积分10
1秒前
所所应助发疯的游子采纳,获得10
1秒前
2秒前
jcm发布了新的文献求助10
3秒前
辛勤的初晴完成签到,获得积分20
3秒前
Scidog发布了新的文献求助10
3秒前
单于静柏完成签到,获得积分10
4秒前
校长发布了新的文献求助10
4秒前
5秒前
御觞丶完成签到,获得积分10
5秒前
今后应助zhui采纳,获得10
6秒前
6秒前
SciGPT应助雾蓝采纳,获得10
6秒前
lulu828完成签到,获得积分10
7秒前
7秒前
科研闲人完成签到,获得积分10
8秒前
内向秋寒发布了新的文献求助10
8秒前
8秒前
黑色兔子完成签到 ,获得积分10
8秒前
9秒前
四小时充足睡眠完成签到,获得积分10
10秒前
zhang0403完成签到,获得积分10
10秒前
欢喜的毛豆完成签到 ,获得积分10
11秒前
华仔应助Eddy采纳,获得10
11秒前
小王发布了新的文献求助10
11秒前
通~发布了新的文献求助10
12秒前
MES发布了新的文献求助10
12秒前
赘婿应助jennifercui采纳,获得10
12秒前
12秒前
13秒前
13秒前
Nifeng完成签到,获得积分10
13秒前
爱听歌的依秋完成签到,获得积分10
13秒前
ufuon发布了新的文献求助10
13秒前
追寻的山晴完成签到,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794