DESIGN OF LOW NOISE MICRO GEOMETRIES FOR HELICAL GEARS ON THE BASIS OF TRANSMISSION ERROR UNDER LOAD

噪音(视频) 参数统计 传输(电信) 火车 计算机科学 结构工程 工程类 电气工程 统计 数学 地图学 人工智能 地理 图像(数学)
作者
B. Kohn,M. Fromberger,Uwe Weinberger,T. Utakapan,M. Otto,Karsten Stahl
标识
DOI:10.25144/23808
摘要

Gearbox design must satisfy multiple demands that usually involve high power density, low energy consumption and favourable noise emission. Where the layout of loaded gears is concerned, the objectives comprise a high load carrying capacity, low gear losses and low noise mesh design. This has become more important of late since for example engine-generated noise levels that used to mask gear noise are reduced by increasingly electrified drive trains. In order to transmit high loads within the smallest possible space the tooth micro geometry must be modified from pure involute form using so-called standard modifications such as crownings or tip relieves to improve the pressure distribution on the flanks. However, these modifications do not generally grant favourable noise behaviour - it is more often found that these flank forms act to the detriment of the mesh excitation and lead to a conflict of objectives which makes compromises necessary. In this paper a new approach beyond the use of standard modifications is presented that relies on a detailed calculation of the transmission error under load (TE), which can be considered as a measurement of the parametric excitation source. The derived flank micro geometries compensate directly for the TE thus making it possible to ensure the load carrying capacity in a first step and then design a theoretically optimal low noise modification in a second subsequent step. Test results with ground specimens on a dynamics test rig show that both TE and acceleration levels are drastically reduced and lead to a superior noise and operating behaviour compared to the also investigated standard modifications. A few challenges associated with this kind of modification are mentioned such as complex manufacturability or compensation for higher mesh orders.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ywindm完成签到 ,获得积分10
1秒前
大气白翠完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
RR完成签到 ,获得积分10
2秒前
2秒前
沉静的乘风完成签到,获得积分10
3秒前
淳于白凝完成签到,获得积分0
4秒前
laa完成签到,获得积分10
4秒前
春风送暖完成签到,获得积分10
4秒前
清修发布了新的文献求助10
5秒前
WWWUBING完成签到,获得积分10
6秒前
3080完成签到 ,获得积分10
7秒前
Titi完成签到 ,获得积分10
7秒前
无止完成签到,获得积分10
8秒前
8秒前
chenying完成签到 ,获得积分0
10秒前
wei完成签到,获得积分10
11秒前
zhangj696完成签到,获得积分10
13秒前
科研助理发布了新的文献求助10
13秒前
提莫蘑菇完成签到,获得积分10
13秒前
Leila完成签到,获得积分10
14秒前
合适的自行车完成签到 ,获得积分10
14秒前
CodeCraft应助艺阳采纳,获得10
16秒前
机智的阿振完成签到,获得积分10
16秒前
LS完成签到,获得积分10
20秒前
神厨小福桂完成签到 ,获得积分10
21秒前
丰富的澜完成签到 ,获得积分10
21秒前
专一的砖头完成签到,获得积分20
22秒前
automan发布了新的文献求助20
23秒前
量子星尘发布了新的文献求助10
23秒前
陈陈要毕业完成签到 ,获得积分10
24秒前
忐忑的中心完成签到,获得积分10
24秒前
科研通AI6应助舒适的采波采纳,获得10
24秒前
谦让汝燕完成签到,获得积分10
25秒前
伶俐的千凡完成签到,获得积分10
25秒前
26秒前
26秒前
q1nzang完成签到 ,获得积分10
27秒前
李健应助xyzdmmm采纳,获得10
27秒前
春风送暖发布了新的文献求助20
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482688
求助须知:如何正确求助?哪些是违规求助? 4583423
关于积分的说明 14389513
捐赠科研通 4512664
什么是DOI,文献DOI怎么找? 2473166
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861