OntoPeFeGe: Ontology-Based Personalized Feedback Generator

计算机科学 本体论 发电机(电路理论) 集合(抽象数据类型) 领域(数学分析) 人机交互 程序设计语言 功率(物理) 数学 量子力学 认识论 物理 数学分析 哲学
作者
Mona Nabil Demaidi,Mohamed Medhat Gaber,Nick Filer
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:6: 31644-31664 被引量:25
标识
DOI:10.1109/access.2018.2846398
摘要

Virtual Learning Environments provide teachers with a web-based platform to create different types of feedback. These environments usually follow the `one size fits all' approach and provide students with the same feedback. Several personalized feedback frameworks have been proposed which adapt the different types of feedback based on the student characteristics and/or the assessment question characteristics. The frameworks are intradisciplinary, neglect the characteristics of the assessment question, and either hard-code or auto-generate the types of feedback from a restricted set of solutions created by a domain expert. This paper contributes to research carried out on personalized feedback frameworks by proposing a generic novel system which is called the Ontology-based Personalized Feedback Generator (OntoPeFeGe). OntoPeFeGe addressed the aforementioned drawbacks using an ontology-a knowledge representation of the educational domain. It integrated several generation strategies and templates to traverse the ontology and auto-generate the questions and feedback. The questions have different characteristics, in particular, aiming to assess students at different levels in Bloom's taxonomy. Each question is associated with different types of feedback that range from verifying student's answers to giving the student more details related to the answer. The feedback auto-generated in OntoPeFeGe is personalized using a rule-based algorithm which takes into account the student characteristics and the assessment question characteristics. The personalized feedback in OntoPeFeGe was quantitatively evaluated on 88 undergraduate students. The results revealed that the personalized feedback significantly improved the performance of students with low background knowledge. In addition, the feedback was evaluated qualitatively using questionnaires provided to teachers and students. The results showed that teachers and students were satisfied with the feedback.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhc完成签到 ,获得积分10
刚刚
木子发布了新的文献求助10
1秒前
过江春雷完成签到 ,获得积分10
4秒前
4秒前
5秒前
傢誠完成签到,获得积分10
5秒前
木子完成签到,获得积分10
7秒前
Jzhang应助mzl采纳,获得10
8秒前
djsj应助想吃芝士荔枝烤鱼采纳,获得10
9秒前
10秒前
赘婿应助Seven采纳,获得10
11秒前
11秒前
12秒前
12秒前
14秒前
14秒前
岛L发布了新的文献求助10
15秒前
15秒前
脑洞疼应助独特的易形采纳,获得10
15秒前
cxk发布了新的文献求助10
18秒前
19秒前
CipherSage应助岛L采纳,获得10
19秒前
lllllll完成签到,获得积分10
20秒前
好好好发布了新的文献求助10
20秒前
sefdscse完成签到,获得积分10
21秒前
轩辕远航完成签到 ,获得积分10
22秒前
SongAce完成签到,获得积分20
24秒前
苹果南烟完成签到,获得积分10
25秒前
hhhhmmmn完成签到,获得积分10
26秒前
JrPaleo101完成签到,获得积分10
26秒前
一口吃三个月亮完成签到,获得积分10
27秒前
28秒前
蒺藜发布了新的文献求助10
32秒前
32秒前
siccy完成签到 ,获得积分10
33秒前
34秒前
Orange应助紫禁城的雪花采纳,获得10
34秒前
37秒前
jennie完成签到 ,获得积分10
38秒前
39秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479574
求助须知:如何正确求助?哪些是违规求助? 3070143
关于积分的说明 9116766
捐赠科研通 2761878
什么是DOI,文献DOI怎么找? 1515589
邀请新用户注册赠送积分活动 700985
科研通“疑难数据库(出版商)”最低求助积分说明 699985