已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

OntoPeFeGe: Ontology-Based Personalized Feedback Generator

计算机科学 本体论 发电机(电路理论) 集合(抽象数据类型) 领域(数学分析) 人机交互 程序设计语言 功率(物理) 数学 量子力学 认识论 物理 数学分析 哲学
作者
Mona Nabil Demaidi,Mohamed Medhat Gaber,Nick Filer
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:6: 31644-31664 被引量:25
标识
DOI:10.1109/access.2018.2846398
摘要

Virtual Learning Environments provide teachers with a web-based platform to create different types of feedback. These environments usually follow the `one size fits all' approach and provide students with the same feedback. Several personalized feedback frameworks have been proposed which adapt the different types of feedback based on the student characteristics and/or the assessment question characteristics. The frameworks are intradisciplinary, neglect the characteristics of the assessment question, and either hard-code or auto-generate the types of feedback from a restricted set of solutions created by a domain expert. This paper contributes to research carried out on personalized feedback frameworks by proposing a generic novel system which is called the Ontology-based Personalized Feedback Generator (OntoPeFeGe). OntoPeFeGe addressed the aforementioned drawbacks using an ontology-a knowledge representation of the educational domain. It integrated several generation strategies and templates to traverse the ontology and auto-generate the questions and feedback. The questions have different characteristics, in particular, aiming to assess students at different levels in Bloom's taxonomy. Each question is associated with different types of feedback that range from verifying student's answers to giving the student more details related to the answer. The feedback auto-generated in OntoPeFeGe is personalized using a rule-based algorithm which takes into account the student characteristics and the assessment question characteristics. The personalized feedback in OntoPeFeGe was quantitatively evaluated on 88 undergraduate students. The results revealed that the personalized feedback significantly improved the performance of students with low background knowledge. In addition, the feedback was evaluated qualitatively using questionnaires provided to teachers and students. The results showed that teachers and students were satisfied with the feedback.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲山彤发布了新的文献求助10
3秒前
飞龙在天完成签到 ,获得积分10
11秒前
L_MD完成签到,获得积分10
11秒前
llll完成签到,获得积分10
14秒前
ceeray23发布了新的文献求助20
16秒前
cnkly完成签到,获得积分10
17秒前
北冥完成签到 ,获得积分10
18秒前
20秒前
cxx完成签到 ,获得积分10
21秒前
25秒前
拉长的迎曼完成签到 ,获得积分10
27秒前
27秒前
磊少发布了新的文献求助10
28秒前
明理鑫完成签到 ,获得积分10
30秒前
Criminology34举报mss求助涉嫌违规
31秒前
orixero应助不信人间有白头采纳,获得10
32秒前
不淄发布了新的文献求助10
34秒前
白给完成签到,获得积分10
35秒前
chujun_cai完成签到 ,获得积分10
35秒前
xmsyq完成签到 ,获得积分10
35秒前
35秒前
丘比特应助哈哈哈采纳,获得10
36秒前
韩涵完成签到 ,获得积分10
37秒前
深情安青应助肯瑞恩哭哭采纳,获得10
43秒前
俭朴爆米花完成签到 ,获得积分10
44秒前
51秒前
51秒前
wanci应助单纯采纳,获得10
53秒前
54秒前
54秒前
可爱邓邓完成签到 ,获得积分10
55秒前
56秒前
善学以致用应助wy采纳,获得10
56秒前
无风发布了新的文献求助10
57秒前
奥米希完成签到,获得积分10
59秒前
1分钟前
快乐咖啡完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Rainsky完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590251
求助须知:如何正确求助?哪些是违规求助? 4674657
关于积分的说明 14794952
捐赠科研通 4630846
什么是DOI,文献DOI怎么找? 2532648
邀请新用户注册赠送积分活动 1501221
关于科研通互助平台的介绍 1468576