亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

OntoPeFeGe: Ontology-Based Personalized Feedback Generator

计算机科学 本体论 发电机(电路理论) 集合(抽象数据类型) 领域(数学分析) 人机交互 程序设计语言 功率(物理) 数学 量子力学 认识论 物理 数学分析 哲学
作者
Mona Nabil Demaidi,Mohamed Medhat Gaber,Nick Filer
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:6: 31644-31664 被引量:25
标识
DOI:10.1109/access.2018.2846398
摘要

Virtual Learning Environments provide teachers with a web-based platform to create different types of feedback. These environments usually follow the `one size fits all' approach and provide students with the same feedback. Several personalized feedback frameworks have been proposed which adapt the different types of feedback based on the student characteristics and/or the assessment question characteristics. The frameworks are intradisciplinary, neglect the characteristics of the assessment question, and either hard-code or auto-generate the types of feedback from a restricted set of solutions created by a domain expert. This paper contributes to research carried out on personalized feedback frameworks by proposing a generic novel system which is called the Ontology-based Personalized Feedback Generator (OntoPeFeGe). OntoPeFeGe addressed the aforementioned drawbacks using an ontology-a knowledge representation of the educational domain. It integrated several generation strategies and templates to traverse the ontology and auto-generate the questions and feedback. The questions have different characteristics, in particular, aiming to assess students at different levels in Bloom's taxonomy. Each question is associated with different types of feedback that range from verifying student's answers to giving the student more details related to the answer. The feedback auto-generated in OntoPeFeGe is personalized using a rule-based algorithm which takes into account the student characteristics and the assessment question characteristics. The personalized feedback in OntoPeFeGe was quantitatively evaluated on 88 undergraduate students. The results revealed that the personalized feedback significantly improved the performance of students with low background knowledge. In addition, the feedback was evaluated qualitatively using questionnaires provided to teachers and students. The results showed that teachers and students were satisfied with the feedback.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
冷酷以太完成签到 ,获得积分20
7秒前
wanci应助朱文韬采纳,获得10
9秒前
墨绝发布了新的文献求助10
9秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
Criminology34应助科研通管家采纳,获得10
24秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
24秒前
Criminology34应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
Criminology34应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
墨绝发布了新的文献求助10
26秒前
所所应助菲子笑采纳,获得10
28秒前
谨慎嫣然发布了新的文献求助10
28秒前
阿布应助朴实的烤鸡采纳,获得10
33秒前
墨绝发布了新的文献求助10
42秒前
田様应助鱼鱼鱼采纳,获得10
48秒前
48秒前
48秒前
王珺完成签到,获得积分10
51秒前
TL发布了新的文献求助10
55秒前
Christina完成签到 ,获得积分10
1分钟前
华仔应助墨绝采纳,获得10
1分钟前
1分钟前
Ricardo完成签到 ,获得积分10
1分钟前
香丿完成签到 ,获得积分10
1分钟前
鱼鱼鱼完成签到,获得积分10
1分钟前
黄婷发布了新的文献求助10
1分钟前
小马甲应助kiki采纳,获得10
1分钟前
黄婷完成签到,获得积分10
1分钟前
hlq完成签到 ,获得积分10
1分钟前
崔京成完成签到 ,获得积分10
1分钟前
起风了完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
姜颀完成签到,获得积分10
1分钟前
VDC应助ldp采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622185
求助须知:如何正确求助?哪些是违规求助? 4707074
关于积分的说明 14938465
捐赠科研通 4768370
什么是DOI,文献DOI怎么找? 2552148
邀请新用户注册赠送积分活动 1514317
关于科研通互助平台的介绍 1475005