OntoPeFeGe: Ontology-Based Personalized Feedback Generator

计算机科学 本体论 发电机(电路理论) 集合(抽象数据类型) 领域(数学分析) 人机交互 程序设计语言 功率(物理) 数学 量子力学 认识论 物理 数学分析 哲学
作者
Mona Nabil Demaidi,Mohamed Medhat Gaber,Nick Filer
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:6: 31644-31664 被引量:25
标识
DOI:10.1109/access.2018.2846398
摘要

Virtual Learning Environments provide teachers with a web-based platform to create different types of feedback. These environments usually follow the `one size fits all' approach and provide students with the same feedback. Several personalized feedback frameworks have been proposed which adapt the different types of feedback based on the student characteristics and/or the assessment question characteristics. The frameworks are intradisciplinary, neglect the characteristics of the assessment question, and either hard-code or auto-generate the types of feedback from a restricted set of solutions created by a domain expert. This paper contributes to research carried out on personalized feedback frameworks by proposing a generic novel system which is called the Ontology-based Personalized Feedback Generator (OntoPeFeGe). OntoPeFeGe addressed the aforementioned drawbacks using an ontology-a knowledge representation of the educational domain. It integrated several generation strategies and templates to traverse the ontology and auto-generate the questions and feedback. The questions have different characteristics, in particular, aiming to assess students at different levels in Bloom's taxonomy. Each question is associated with different types of feedback that range from verifying student's answers to giving the student more details related to the answer. The feedback auto-generated in OntoPeFeGe is personalized using a rule-based algorithm which takes into account the student characteristics and the assessment question characteristics. The personalized feedback in OntoPeFeGe was quantitatively evaluated on 88 undergraduate students. The results revealed that the personalized feedback significantly improved the performance of students with low background knowledge. In addition, the feedback was evaluated qualitatively using questionnaires provided to teachers and students. The results showed that teachers and students were satisfied with the feedback.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
UU发布了新的文献求助10
1秒前
超级李包包完成签到,获得积分10
1秒前
FashionBoy应助青mu采纳,获得10
1秒前
美好斓发布了新的文献求助10
1秒前
笑一笑发布了新的文献求助10
3秒前
3秒前
4秒前
Akim应助WEE采纳,获得10
4秒前
5秒前
whitekitten发布了新的文献求助30
6秒前
hyhyhyhy发布了新的文献求助10
7秒前
Y_LH完成签到,获得积分20
8秒前
英俊的铭应助hxldsb采纳,获得10
8秒前
顺利的觅云应助wang采纳,获得20
9秒前
夜莺应助A小汉堡采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
miaomiaomiao发布了新的文献求助10
10秒前
Z6745完成签到,获得积分10
10秒前
momo发布了新的文献求助10
11秒前
科研通AI5应助kjinm采纳,获得10
11秒前
汉堡包应助lengcy采纳,获得10
11秒前
11秒前
Ccccn完成签到,获得积分10
12秒前
大猪完成签到 ,获得积分10
13秒前
张学虫完成签到 ,获得积分10
13秒前
英俊的铭应助ShengzhangLiu采纳,获得10
13秒前
科研通AI6应助Carolejane采纳,获得10
13秒前
现代傲芙关注了科研通微信公众号
13秒前
whitekitten完成签到,获得积分10
14秒前
Y_LH发布了新的文献求助10
14秒前
现代傲芙关注了科研通微信公众号
15秒前
Wr发布了新的文献求助10
15秒前
微笑的文涛完成签到,获得积分10
16秒前
16秒前
18秒前
科研通AI5应助微笑的文涛采纳,获得10
19秒前
现代的十八完成签到,获得积分10
20秒前
hxldsb发布了新的文献求助10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5049551
求助须知:如何正确求助?哪些是违规求助? 4277489
关于积分的说明 13333822
捐赠科研通 4092139
什么是DOI,文献DOI怎么找? 2239507
邀请新用户注册赠送积分活动 1246375
关于科研通互助平台的介绍 1174960