Attention-Aware Multi-Task Convolutional Neural Networks

计算机科学 卷积神经网络 稳健性(进化) 冗余(工程) 人工智能 一般化 任务分析 深度学习 任务(项目管理) 多任务学习 网络体系结构 人工神经网络 机器学习 化学 数学 管理 计算机安全 经济 基因 操作系统 数学分析 生物化学
作者
Kejie Lyu,Yingming Li,Zhongfei Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 1867-1878 被引量:12
标识
DOI:10.1109/tip.2019.2944522
摘要

Multi-task deep learning methods learn multiple tasks simultaneously and share representations amongst them, so information from related tasks improves learning within one task. The generalization capabilities of the produced models are substantially enhanced. Typical multi-task deep learning models usually share representations of different tasks in lower layers of the network, and separate representations of different tasks in higher layers. However, different groups of tasks always have different requirements for sharing representations, so the required design criterion does not necessarily guarantee that the obtained network architecture is optimal. In addition, most existing methods ignore the redundancy problem and lack the pre-screening process for representations before they are shared. Here, we propose a model called Attention-aware Multi-task Convolutional Neural Network, which automatically learns appropriate sharing through end-to-end training. The attention mechanism is introduced into our architecture to suppress redundant contents contained in the representations. The shortcut connection is adopted to preserve useful information. We evaluate our model by carrying out experiments on different task groups and different datasets. Our model demonstrates an improvement over existing techniques in many experiments, indicating the effectiveness and the robustness of the model. We also demonstrate the importance of attention mechanism and shortcut connection in our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
二光头完成签到 ,获得积分10
1秒前
黑YA发布了新的文献求助10
2秒前
HY发布了新的文献求助10
2秒前
肖婷婷完成签到,获得积分10
2秒前
3秒前
细胞骨架完成签到,获得积分10
3秒前
Mathilda发布了新的文献求助10
3秒前
5秒前
5秒前
天天快乐应助无异常采纳,获得10
5秒前
7秒前
7秒前
7秒前
7秒前
8秒前
完美世界应助vt采纳,获得10
8秒前
8秒前
8秒前
9秒前
10秒前
10秒前
喂喂完成签到 ,获得积分10
11秒前
lvjiahui发布了新的文献求助10
11秒前
科研狗发布了新的文献求助10
11秒前
大魁发布了新的文献求助10
12秒前
嘚嘚完成签到,获得积分10
12秒前
乐观小之应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
FashionBoy应助pass采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
12秒前
乐观小之应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
herococa应助科研通管家采纳,获得10
13秒前
herococa应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952038
求助须知:如何正确求助?哪些是违规求助? 3497457
关于积分的说明 11087593
捐赠科研通 3228096
什么是DOI,文献DOI怎么找? 1784669
邀请新用户注册赠送积分活动 868839
科研通“疑难数据库(出版商)”最低求助积分说明 801198