果胶
细胞壁
钙
延伸率
化学
植物
园艺
生物
生物物理学
生物化学
材料科学
极限抗拉强度
有机化学
冶金
作者
Yalin Liu,Muhammad Riaz,Lei Yan,Yu Zeng,Cuncang Jiang
标识
DOI:10.1016/j.plaphy.2019.10.007
摘要
Boron (B) and calcium (Ca) are essential elements for plant growth. Both deficiencies inhibit root growth. However, the mechanism of inhibition is not well clear. Morphological characteristics of roots and changes in root cell wall grown at different B and Ca deficiencies were examined by using a hydroponic culture system. Both B and Ca deficiencies caused reduced plant biomass and root growth. Ca deficiency significantly decreased the fresh weight of root, stem, and leaves by 47%, 50%, and 62%, respectively, while B deficiency only reduced root fresh weight. The PCA combined with Pearson correlation analysis showed that there was significant different correlation among root parameters under B and Ca deficiency treatments when compared to control. The results of observation of transmission electron microscope showed that Ca deficiency reduced but B deprivation increased the thickness of the cell wall. Combining these technologies like X-ray diffraction, fourier transform infrared spectroscopy, homogalacturonan epitopes (JIM5 and JIM7), we confirmed that those changes above may be due to different changes in the degree of methyl esterification of pectin and glycoprotein of the cell wall. Taken together, we concluded that B deficiency can promote the formation of more low methyl esterified pectin to increase cell wall thickness, and then affect the morphological development of root system, while the formation of more highly methyl esterified pectin to increase cell wall degradation under Ca deficiency, which inhibited root elongation and formation of root branches.
科研通智能强力驱动
Strongly Powered by AbleSci AI