Choosing what to choose from: Preference for inclusion over exclusion when constructing consideration sets from large choice sets

偏爱 选择集 集合(抽象数据类型) 包裹体(矿物) 包含-排除原则 过程(计算) 质量(理念) 计算机科学 心理学 社会心理学 计量经济学 数学 统计 操作系统 法学 程序设计语言 哲学 认识论 政治 政治学
作者
Joseph K. Goodman,Rebecca Walker Reczek
出处
期刊:Journal of Behavioral Decision Making [Wiley]
卷期号:34 (1): 85-98 被引量:5
标识
DOI:10.1002/bdm.2199
摘要

Abstract Decision making is a two‐stage process, consisting of, first, consideration set construction and then final choice. Decision makers can form a consideration set from a choice set using one of two strategies: including the options they wish to further consider or excluding those they do not wish to further consider. The authors propose that decision makers have a relative preference for an inclusion (vs. exclusion) strategy when choosing from large choice sets and that this preference is driven primarily by a lay belief that inclusion requires less effort than exclusion, particularly in large choice sets. Study 1 demonstrates that decision makers prefer using an inclusion (vs. exclusion) strategy when faced with large choice sets. Study 2 replicates the effect of choice set size on preference for consideration set construction strategy and demonstrates that the belief that exclusion is more effortful mediates the relative preference for inclusion in large choice sets. Studies 3 and 4 further support the importance of perceived effort, demonstrating a greater preference for inclusion in large choice sets when decision makers are primed to think about effort (vs. accuracy; Study 3) and when the choice set is perceived as requiring more effort because of more information being presented about each alternative (vs. more alternatives in the choice set; Study 4). Finally, Study 5 manipulates consideration set construction strategy, showing that using inclusion (vs. exclusion) in large choice sets leads to smaller consideration sets, greater confidence in the decision process, and a higher quality consideration set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GY发布了新的文献求助10
1秒前
1秒前
个性南莲完成签到,获得积分10
1秒前
LIUjun发布了新的文献求助10
1秒前
微笑的兔子完成签到,获得积分10
3秒前
蕾蕾发布了新的文献求助10
4秒前
萧水白应助xutingfeng采纳,获得50
6秒前
萧水白应助xutingfeng采纳,获得50
6秒前
沈业桥发布了新的文献求助10
6秒前
8秒前
芝麻省理工大学高材生完成签到,获得积分10
12秒前
Jasper应助无语的电源采纳,获得10
13秒前
sci发布了新的文献求助10
13秒前
汉堡包应助yunpeng采纳,获得10
14秒前
15秒前
15秒前
18秒前
米尔的猫发布了新的文献求助10
19秒前
斯文败类应助佩奇采纳,获得10
20秒前
沈业桥完成签到,获得积分10
20秒前
xy完成签到,获得积分10
21秒前
科研轮回发布了新的文献求助10
22秒前
我服有点黑完成签到,获得积分10
22秒前
23秒前
慕青应助言叶采纳,获得10
25秒前
天天快乐应助寒冷煎饼采纳,获得10
26秒前
牛简简完成签到,获得积分10
26秒前
Singularity应助JamesTYD采纳,获得10
26秒前
Arashi完成签到 ,获得积分10
27秒前
27秒前
菠萝蜜发布了新的文献求助10
29秒前
30秒前
30秒前
田様应助花痴的骁采纳,获得10
31秒前
网易乐发布了新的文献求助10
31秒前
李嘉图发布了新的文献求助10
32秒前
老姚发布了新的文献求助10
33秒前
34秒前
34秒前
34秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
Toward personalized care for insomnia in the US Army: a machine learning model to predict response to cognitive behavioral therapy for insomnia 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392384
求助须知:如何正确求助?哪些是违规求助? 3003056
关于积分的说明 8807166
捐赠科研通 2689817
什么是DOI,文献DOI怎么找? 1473309
科研通“疑难数据库(出版商)”最低求助积分说明 681513
邀请新用户注册赠送积分活动 674348