Machine Learning Interatomic Potentials as Emerging Tools for Materials Science

材料科学 原子间势 纳米技术 密度泛函理论 电子结构 原子单位 超级电容器 比例(比率) 纳米颗粒 工作(物理) 计算机科学 分子动力学 电极 计算化学 物理 热力学 凝聚态物理 化学 量子力学 电化学
作者
Volker L. Deringer,A. Miguel,Gábor Cśanyi
出处
期刊:Advanced Materials [Wiley]
卷期号:31 (46) 被引量:760
标识
DOI:10.1002/adma.201902765
摘要

Abstract Atomic‐scale modeling and understanding of materials have made remarkable progress, but they are still fundamentally limited by the large computational cost of explicit electronic‐structure methods such as density‐functional theory. This Progress Report shows how machine learning (ML) is currently enabling a new degree of realism in materials modeling: by “learning” electronic‐structure data, ML‐based interatomic potentials give access to atomistic simulations that reach similar accuracy levels but are orders of magnitude faster. A brief introduction to the new tools is given, and then, applications to some select problems in materials science are highlighted: phase‐change materials for memory devices; nanoparticle catalysts; and carbon‐based electrodes for chemical sensing, supercapacitors, and batteries. It is hoped that the present work will inspire the development and wider use of ML‐based interatomic potentials in diverse areas of materials research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈哈完成签到 ,获得积分10
刚刚
Soleil完成签到,获得积分20
2秒前
科研通AI2S应助super chan采纳,获得10
2秒前
甜甜信封完成签到,获得积分10
3秒前
3秒前
ys1111完成签到 ,获得积分10
4秒前
bee完成签到,获得积分10
4秒前
Orange应助e394282438采纳,获得10
5秒前
JamesPei应助XZC采纳,获得10
6秒前
太叔开山发布了新的文献求助10
7秒前
背完单词好睡觉完成签到 ,获得积分10
7秒前
7秒前
9秒前
内向凌波完成签到 ,获得积分10
10秒前
di完成签到,获得积分10
11秒前
爱撒娇的孤丹完成签到 ,获得积分10
12秒前
12秒前
ys1111xiao完成签到 ,获得积分10
12秒前
爆米花应助aha采纳,获得10
13秒前
李妍庆发布了新的文献求助10
14秒前
坚强觅珍完成签到 ,获得积分10
15秒前
super chan发布了新的文献求助10
15秒前
Una完成签到,获得积分10
16秒前
虫虫发布了新的文献求助10
17秒前
阿甘完成签到,获得积分10
18秒前
深情安青应助太叔开山采纳,获得10
24秒前
似雨若离完成签到,获得积分10
27秒前
z7486完成签到,获得积分10
27秒前
满意又蓝完成签到,获得积分10
27秒前
科研通AI6应助小包包采纳,获得10
28秒前
nanfeng完成签到 ,获得积分10
28秒前
GHR完成签到 ,获得积分10
29秒前
aaa发布了新的文献求助10
29秒前
31秒前
34秒前
钰泠完成签到 ,获得积分10
34秒前
MOON完成签到,获得积分10
34秒前
等于零完成签到 ,获得积分10
35秒前
sunqian完成签到,获得积分10
36秒前
yanjiuhuzu完成签到,获得积分10
36秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378758
求助须知:如何正确求助?哪些是违规求助? 4503204
关于积分的说明 14015274
捐赠科研通 4411911
什么是DOI,文献DOI怎么找? 2423541
邀请新用户注册赠送积分活动 1416486
关于科研通互助平台的介绍 1393925