Structural basis of transcription inhibition by the DNA mimic protein Ocr of bacteriophage T7

生物 噬菌体 抄写(语言学) 大肠杆菌 DNA RNA聚合酶 细菌病毒 T7 RNA聚合酶 细菌 遗传学 细胞生物学 基因 语言学 哲学
作者
Fuzhou Ye,Ioly Kotta‐Loizou,Milija Jovanovic,Xiaojiao Liu,David T. F. Dryden,Martin Buck,Xiaodong Zhang
出处
期刊:eLife [eLife Sciences Publications Ltd]
卷期号:9 被引量:11
标识
DOI:10.7554/elife.52125
摘要

Bacteriophage T7 infects Escherichia coli and evades the host restriction/modification system. The Ocr protein of T7 was shown to exist as a dimer mimicking DNA and to bind to host restriction enzymes, thus preventing the degradation of the viral genome by the host. Here we report that Ocr can also inhibit host transcription by directly binding to bacterial RNA polymerase (RNAP) and competing with the recruitment of RNAP by sigma factors. Using cryo electron microscopy, we determined the structures of Ocr bound to RNAP. The structures show that an Ocr dimer binds to RNAP in the cleft, where key regions of sigma bind and where DNA resides during transcription synthesis, thus providing a structural basis for the transcription inhibition. Our results reveal the versatility of Ocr in interfering with host systems and suggest possible strategies that could be exploited in adopting DNA mimicry as a basis for forming novel antibiotics.Bacteria and viruses have long been fighting amongst themselves. Bacteriophages are a type of virus that invade bacteria; their name literally means ‘bacteria eater’. The bacteriophage T7, for example, infects the common bacteria known as Escherichia coli. Once inside, the virus hijacks the bacterium’s cellular machinery, using it to replicate its own genetic material and make more copies of the virus so it can spread. At the same time, the bacteria have found ways to try and defend themselves, which in turn has led some bacteriophages to develop countermeasures to overcome those defences. Many bacteria, for example, have restriction enzymes which recognise certain sections of the bacteriophage DNA and cut it into fragments. However, the T7 bacteriophage has one well-known protein called Ocr which inhibits restriction enzymes. Ocr does this by mimicking DNA, which led Ye et al. to wonder if it could also interrupt other vital processes in a bacterial cell that involve DNA. Transcription is the first step in a coordinated process that turns the genetic information stored in a cell’s DNA into useful proteins. An enzyme called RNA polymerase decodes the DNA sequence into a go-between molecule called messenger RNA, and it was here that Ye et al. thought Ocr might jump in to interfere. To begin, Ye et al. examined the structure of Ocr when it binds to RNA polymerase using an imaging technique called cryo-electron microscopy. Ocr has been well-studied before, its structure previously described, but not when attached to RNA polymerase. The analysis showed that Ocr gets in the way of specific molecules, called sigma factors, that show RNA polymerase where to start transcription. Ocr binds to RNA polymerase in exactly the same pocket as part of sigma factors do, which is also the place where DNA must be to be decoded to make messenger RNA. Ye et al. then performed experiments to show Ocr interfering with binding to RNA polymerase did indeed disrupt transcription. This means Ocr is quite versatile as it interferes with the RNA polymerase of the bacterial host and its restriction enzymes. Ocr’s strategy of mimicking DNA to interrupt transcription could be adopted as an approach to develop new antibiotics to stop bacterial infections. DNA transcription is an essential cellular process – without it, no cell can replicate and survive – and RNA polymerase is already a validated target for drugs. Following Ocr’s lead could provide a new way to stop infections, if the right drug can be designed to fit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芋泥发布了新的文献求助10
刚刚
renee_yok完成签到 ,获得积分10
刚刚
1秒前
思源应助xiaobai采纳,获得10
1秒前
喂喂喂发布了新的文献求助10
1秒前
半柚应助的撒大苏打采纳,获得10
2秒前
3秒前
重要外套发布了新的文献求助10
3秒前
3秒前
斯文败类应助量子星尘采纳,获得10
3秒前
4秒前
脑洞疼应助量子星尘采纳,获得10
4秒前
4秒前
heartworm发布了新的文献求助10
4秒前
赘婿应助yukuai采纳,获得10
5秒前
orixero应助量子星尘采纳,获得30
5秒前
bkagyin应助小罗同学采纳,获得10
6秒前
椰子壳发布了新的文献求助10
6秒前
7秒前
偶然发现的西柚完成签到 ,获得积分10
8秒前
yan完成签到,获得积分10
8秒前
orixero应助翻似烂柯人采纳,获得10
8秒前
干净的寄翠完成签到 ,获得积分10
8秒前
Sw发布了新的文献求助10
9秒前
tingtingzhao完成签到 ,获得积分10
10秒前
Hello应助HX采纳,获得10
11秒前
所所应助聆风采纳,获得10
11秒前
爆米花应助昂口3采纳,获得10
11秒前
小白t73完成签到 ,获得积分10
11秒前
sota发布了新的文献求助10
11秒前
sunflower发布了新的文献求助10
11秒前
11秒前
张浩毅完成签到,获得积分20
12秒前
木槿完成签到 ,获得积分10
12秒前
12秒前
爆米花完成签到,获得积分10
12秒前
爆米花应助喂喂喂采纳,获得10
12秒前
13秒前
paopao完成签到,获得积分10
14秒前
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961728
求助须知:如何正确求助?哪些是违规求助? 3508080
关于积分的说明 11139419
捐赠科研通 3240738
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803344