[High definition MRI rectal lymph node aided diagnostic system based on deep neural network].

医学 放射科 结直肠癌 淋巴结转移 深度学习 淋巴结 人工智能 磁共振成像 转移 淋巴 接收机工作特性 癌症 病理 内科学 计算机科学
作者
Yunpeng Zhou,Shuo Li,Xianxiang Zhang,Zhengdong Zhang,Yuanxiang Gao,Lei Ding,Yun Lu
出处
期刊:PubMed 卷期号:57 (2): 108-113 被引量:12
标识
DOI:10.3760/cma.j.issn.0529-5815.2019.02.007
摘要

Objective: To investigate the clinical significance of high definition (HD) MRI rectal lymph node aided diagnostic system based on deep neural network. Methods: The research selected 301 patients with rectal cancer who underwent pelvic HD MRI and reported pelvic lymph node metastasis from July 2016 to December 2017 in Affiliated Hospital of Qingdao University. According to the chronological order, the first 201 cases were used as learning group. The remaining 100 cases were used as verification group. There were 149 males (74.1%) and 52 females in the study group, with an average age of 58.8 years. There were 76 males (76.0%) and 24 females in the validation group, with an average age of 60.2 years. Firstly, Using deep learning technique, researchers trained the 12 060 HD MRI lymph nodes images data of learning group with convolution neural network to simulate the judgment process of radiologists, and established an artificial intelligence automatic recognition system for metastatic lymph nodes of rectal cancer. Then, 6 030 images of the validation group were clinically validated. Artificial intelligence and radiologists simultaneously diagnosed all cases of HD MRI images and made the diagnosis results of metastatic lymph node. Receiver operating characteristic (ROC) curve and area under curve (AUC) were used to compare the diagnostic level of them. Results: After continuous iteration training of the learning group data, the loss function value of artificial intelligence decreased continuously, and the diagnostic error decreased continuously. Among the 6 030 images of verification group, 912 images were considered to exist metastatic lymph nodes in radiologists' diagnosis and 987 in artificial intelligence diagnosis. There were 772 images having identical diagnostic results of lymph node location and number of metastases with the two methods. Compared with manual diagnosis, the AUC of the intelligent platform was 0.886 2, the diagnostic time of a single case was 10 s, but the average diagnostic time of doctors was 600 s. Conclusion: The HD MRI lymph node automatic recognition system based on deep neural network has high accuracy and high efficiency, and has the clinical significance of auxiliary diagnosis.目的: 探讨基于深度神经网络的高分辨MRI直肠淋巴结识别系统的临床应用价值。 方法: 选取青岛大学附属医院2016年7月至2017年12月术前行盆腔高分辨MRI扫描且报告中明确有盆腔淋巴结转移的直肠癌患者301例,按照就诊时间顺序前201例作为学习组,后100例作为验证组。学习组男性149例,女性52例,平均年龄58.8岁;验证组男性76例,女性24例,平均年龄60.2岁。首先,利用深度学习技术及学习组的12 060张淋巴结高分辨MRI图像,在卷积神经网络下进行训练,模拟影像科医师的判断过程,从而建立了直肠癌淋巴结转移的人工智能自动识别系统。然后,对验证组的6 030张淋巴结高分辨MRI图像进行临床验证,人工智能和影像科医师同时对淋巴结转移情况作出诊断,利用受试者工作特征曲线比较两者的诊断水平。 结果: 经过对学习组数据的不断迭代训练,人工智能的损失函数值不断降低,诊断误差不断降低。验证组的6 030张图像,人工诊断共912张存在淋巴结转移,人工智能诊断共987张存在淋巴结转移,两者诊断结果完全相同(淋巴结位置和转移数量完全相符)的图像共772张。相比于人工诊断,人工智能诊断的曲线下面积为0.886 2,单个病例的诊断时间为10 s,而影像科医师的平均判断时间为600 s。 结论: 基于深度神经网络的直肠高分辨MRI淋巴结自动识别系统具有较高的准确率,且效率高,可以辅助进行临床诊断。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助果酱采纳,获得10
刚刚
刚刚
研友_VZG7GZ应助Julie采纳,获得10
刚刚
汉堡包应助莫离采纳,获得10
刚刚
皮肤科应助xinlei2023采纳,获得10
刚刚
123发布了新的文献求助10
1秒前
我是老大应助dpf666采纳,获得10
3秒前
3秒前
vanished_cat完成签到,获得积分10
3秒前
大会哥发布了新的文献求助10
4秒前
cbf完成签到,获得积分10
5秒前
seedcode发布了新的文献求助10
5秒前
5秒前
5秒前
小蘑菇应助忆寒采纳,获得50
7秒前
mooncake发布了新的文献求助10
8秒前
共享精神应助sdl采纳,获得10
8秒前
9秒前
佟莫言发布了新的文献求助10
10秒前
徐徐徐完成签到 ,获得积分20
10秒前
11秒前
srrrr完成签到,获得积分10
12秒前
zhou发布了新的文献求助30
13秒前
斯寜应助何小明采纳,获得20
13秒前
英俊的铭应助丝丝采纳,获得10
14秒前
思源应助123采纳,获得10
14秒前
深情安青应助yuguofang采纳,获得10
14秒前
14秒前
ShengQ完成签到,获得积分10
15秒前
charolte完成签到,获得积分10
15秒前
nini完成签到,获得积分10
15秒前
lipengjiajun完成签到,获得积分10
15秒前
吐司咩咩完成签到,获得积分10
16秒前
阿达完成签到 ,获得积分20
19秒前
19秒前
22秒前
22秒前
23秒前
n3pu030036应助myj采纳,获得10
23秒前
Mastar完成签到,获得积分10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774624
求助须知:如何正确求助?哪些是违规求助? 3320418
关于积分的说明 10200000
捐赠科研通 3035017
什么是DOI,文献DOI怎么找? 1665320
邀请新用户注册赠送积分活动 796859
科研通“疑难数据库(出版商)”最低求助积分说明 757618