[High definition MRI rectal lymph node aided diagnostic system based on deep neural network].

医学 放射科 结直肠癌 淋巴结转移 深度学习 淋巴结 人工智能 磁共振成像 转移 淋巴 接收机工作特性 癌症 病理 内科学 计算机科学
作者
Yunpeng Zhou,Shuo Li,Xianxiang Zhang,Zhengdong Zhang,Yuanxiang Gao,Lei Ding,Yun Lu
出处
期刊:PubMed 卷期号:57 (2): 108-113 被引量:12
标识
DOI:10.3760/cma.j.issn.0529-5815.2019.02.007
摘要

Objective: To investigate the clinical significance of high definition (HD) MRI rectal lymph node aided diagnostic system based on deep neural network. Methods: The research selected 301 patients with rectal cancer who underwent pelvic HD MRI and reported pelvic lymph node metastasis from July 2016 to December 2017 in Affiliated Hospital of Qingdao University. According to the chronological order, the first 201 cases were used as learning group. The remaining 100 cases were used as verification group. There were 149 males (74.1%) and 52 females in the study group, with an average age of 58.8 years. There were 76 males (76.0%) and 24 females in the validation group, with an average age of 60.2 years. Firstly, Using deep learning technique, researchers trained the 12 060 HD MRI lymph nodes images data of learning group with convolution neural network to simulate the judgment process of radiologists, and established an artificial intelligence automatic recognition system for metastatic lymph nodes of rectal cancer. Then, 6 030 images of the validation group were clinically validated. Artificial intelligence and radiologists simultaneously diagnosed all cases of HD MRI images and made the diagnosis results of metastatic lymph node. Receiver operating characteristic (ROC) curve and area under curve (AUC) were used to compare the diagnostic level of them. Results: After continuous iteration training of the learning group data, the loss function value of artificial intelligence decreased continuously, and the diagnostic error decreased continuously. Among the 6 030 images of verification group, 912 images were considered to exist metastatic lymph nodes in radiologists' diagnosis and 987 in artificial intelligence diagnosis. There were 772 images having identical diagnostic results of lymph node location and number of metastases with the two methods. Compared with manual diagnosis, the AUC of the intelligent platform was 0.886 2, the diagnostic time of a single case was 10 s, but the average diagnostic time of doctors was 600 s. Conclusion: The HD MRI lymph node automatic recognition system based on deep neural network has high accuracy and high efficiency, and has the clinical significance of auxiliary diagnosis.目的: 探讨基于深度神经网络的高分辨MRI直肠淋巴结识别系统的临床应用价值。 方法: 选取青岛大学附属医院2016年7月至2017年12月术前行盆腔高分辨MRI扫描且报告中明确有盆腔淋巴结转移的直肠癌患者301例,按照就诊时间顺序前201例作为学习组,后100例作为验证组。学习组男性149例,女性52例,平均年龄58.8岁;验证组男性76例,女性24例,平均年龄60.2岁。首先,利用深度学习技术及学习组的12 060张淋巴结高分辨MRI图像,在卷积神经网络下进行训练,模拟影像科医师的判断过程,从而建立了直肠癌淋巴结转移的人工智能自动识别系统。然后,对验证组的6 030张淋巴结高分辨MRI图像进行临床验证,人工智能和影像科医师同时对淋巴结转移情况作出诊断,利用受试者工作特征曲线比较两者的诊断水平。 结果: 经过对学习组数据的不断迭代训练,人工智能的损失函数值不断降低,诊断误差不断降低。验证组的6 030张图像,人工诊断共912张存在淋巴结转移,人工智能诊断共987张存在淋巴结转移,两者诊断结果完全相同(淋巴结位置和转移数量完全相符)的图像共772张。相比于人工诊断,人工智能诊断的曲线下面积为0.886 2,单个病例的诊断时间为10 s,而影像科医师的平均判断时间为600 s。 结论: 基于深度神经网络的直肠高分辨MRI淋巴结自动识别系统具有较高的准确率,且效率高,可以辅助进行临床诊断。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
婉晚发布了新的文献求助10
1秒前
菲菲发布了新的文献求助30
1秒前
1秒前
完美世界应助默读采纳,获得10
1秒前
1秒前
天天快乐应助zzz采纳,获得10
1秒前
bkagyin应助细心的抽屉采纳,获得10
2秒前
白小施完成签到,获得积分10
3秒前
4秒前
5秒前
明月清风完成签到,获得积分10
5秒前
科研通AI2S应助勤劳钧采纳,获得30
5秒前
FashionBoy应助maonaiqian采纳,获得10
6秒前
里涵发布了新的文献求助10
6秒前
7秒前
7秒前
科研yu发布了新的文献求助30
8秒前
8秒前
10秒前
liz发布了新的文献求助10
10秒前
CodeCraft应助Ergou采纳,获得10
10秒前
Hao发布了新的文献求助10
10秒前
10秒前
10秒前
专注纹完成签到,获得积分10
11秒前
小酒迟疑发布了新的文献求助10
11秒前
mrwill发布了新的文献求助10
11秒前
11秒前
unflycn发布了新的文献求助10
11秒前
FJM完成签到,获得积分10
13秒前
fire完成签到,获得积分10
13秒前
打打应助一一采纳,获得10
14秒前
zzz发布了新的文献求助10
15秒前
15秒前
林思完成签到,获得积分10
16秒前
16秒前
16秒前
冷艳的孤晴完成签到,获得积分10
16秒前
wipmzxu完成签到,获得积分10
17秒前
CL完成签到,获得积分10
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123170
求助须知:如何正确求助?哪些是违规求助? 2773659
关于积分的说明 7718928
捐赠科研通 2429325
什么是DOI,文献DOI怎么找? 1290230
科研通“疑难数据库(出版商)”最低求助积分说明 621795
版权声明 600251