期刊:ACS applied energy materials [American Chemical Society] 日期:2020-11-17卷期号:3 (12): 12246-12253被引量:14
标识
DOI:10.1021/acsaem.0c02317
摘要
The PtNi alloy exhibits excellent catalytic activity for oxygen reduction. However, particle agglomeration and support corrosion during the electrochemical reaction inevitably decrease its catalytic stability. Herein, we synthesize PtNi anchored on MoOx (PtNi-MoOx/NC) catalysts by pyrolysis treatment and the ethylene glycol method. It exhibits better catalytic stability than the commercial Pt/C and the prepared PtNiMo ternary catalysts. After the 30k cycle accelerated degradation test, the catalytic activity attenuations for PtNi–MoO3/NC and PtNi–MoO2/NC are 17 and 24%, respectively, which are lower than that of the commercial Pt/C (59%) and the prepared PtNiMo/NC (70%). The stability enhancement can be attributed to the strong metal–support interactions that effectively restrain the aggregation and shedding of PtNi nanoparticles. This work provides a promising strategy to improve the catalytic stability by introducing insoluble metal oxides as support materials for oxygen reduction reaction.