CoralSeg: Learning coral segmentation from sparse annotations

计算机科学 分割 人工智能 任务(项目管理) 一般化 机器学习 深度学习 语义学(计算机科学) 编码器 模式识别(心理学) 数学分析 数学 管理 经济 程序设计语言 操作系统
作者
Íñigo Alonso,Matan Yuval,Gal Eyal,Tali Treibitz,Ana C. Murillo
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:36 (8): 1456-1477 被引量:52
标识
DOI:10.1002/rob.21915
摘要

Abstract Robotic advances and developments in sensors and acquisition systems facilitate the collection of survey data in remote and challenging scenarios. Semantic segmentation, which attempts to provide per‐pixel semantic labels, is an essential task when processing such data. Recent advances in deep learning approaches have boosted this task's performance. Unfortunately, these methods need large amounts of labeled data, which is usually a challenge in many domains. In many environmental monitoring instances, such as the coral reef example studied here, data labeling demands expert knowledge and is costly. Therefore, many data sets often present scarce and sparse image annotations or remain untouched in image libraries. This study proposes and validates an effective approach for learning semantic segmentation models from sparsely labeled data. Based on augmenting sparse annotations with the proposed adaptive superpixel segmentation propagation, we obtain similar results as if training with dense annotations, significantly reducing the labeling effort. We perform an in‐depth analysis of our labeling augmentation method as well as of different neural network architectures and loss functions for semantic segmentation. We demonstrate the effectiveness of our approach on publicly available data sets of different real domains, with the emphasis on underwater scenarios—specifically, coral reef semantic segmentation. We release new labeled data as well as an encoder trained on half a million coral reef images, which is shown to facilitate the generalization to new coral scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
虚拟的若完成签到,获得积分10
1秒前
香蕉觅云应助大气凝云采纳,获得10
2秒前
卡乐李发布了新的文献求助10
2秒前
2秒前
JJ发布了新的文献求助10
2秒前
上官若男应助朴素珩采纳,获得10
3秒前
4秒前
wwwww发布了新的文献求助10
4秒前
4秒前
千羽汐完成签到,获得积分20
4秒前
5秒前
两张发布了新的文献求助10
6秒前
严天飞发布了新的文献求助10
7秒前
tyj发布了新的文献求助10
7秒前
7秒前
ZZZkn发布了新的文献求助10
9秒前
lixiao1912完成签到,获得积分10
10秒前
10秒前
cc发布了新的文献求助10
11秒前
被风吹过的路完成签到,获得积分10
11秒前
科目三应助Dec采纳,获得10
11秒前
SciGPT应助李李采纳,获得10
12秒前
找文献呢发布了新的文献求助10
12秒前
12秒前
奇点完成签到,获得积分10
12秒前
ctc完成签到,获得积分10
13秒前
lyman完成签到,获得积分10
14秒前
gxffxf完成签到,获得积分10
14秒前
研友_VZG7GZ应助研友_R2D2采纳,获得10
15秒前
wwwww完成签到,获得积分10
16秒前
cgr发布了新的文献求助10
16秒前
yznfly应助夏天采纳,获得100
17秒前
cxxx发布了新的文献求助10
17秒前
着急的小松鼠完成签到,获得积分10
18秒前
19秒前
19秒前
阿尔法突袭完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679900
求助须知:如何正确求助?哪些是违规求助? 4994585
关于积分的说明 15171123
捐赠科研通 4839670
什么是DOI,文献DOI怎么找? 2593541
邀请新用户注册赠送积分活动 1546594
关于科研通互助平台的介绍 1504721