CoralSeg: Learning coral segmentation from sparse annotations

计算机科学 分割 人工智能 任务(项目管理) 一般化 机器学习 深度学习 语义学(计算机科学) 编码器 模式识别(心理学) 数学分析 数学 管理 经济 程序设计语言 操作系统
作者
Íñigo Alonso,Matan Yuval,Gal Eyal,Tali Treibitz,Ana C. Murillo
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:36 (8): 1456-1477 被引量:52
标识
DOI:10.1002/rob.21915
摘要

Abstract Robotic advances and developments in sensors and acquisition systems facilitate the collection of survey data in remote and challenging scenarios. Semantic segmentation, which attempts to provide per‐pixel semantic labels, is an essential task when processing such data. Recent advances in deep learning approaches have boosted this task's performance. Unfortunately, these methods need large amounts of labeled data, which is usually a challenge in many domains. In many environmental monitoring instances, such as the coral reef example studied here, data labeling demands expert knowledge and is costly. Therefore, many data sets often present scarce and sparse image annotations or remain untouched in image libraries. This study proposes and validates an effective approach for learning semantic segmentation models from sparsely labeled data. Based on augmenting sparse annotations with the proposed adaptive superpixel segmentation propagation, we obtain similar results as if training with dense annotations, significantly reducing the labeling effort. We perform an in‐depth analysis of our labeling augmentation method as well as of different neural network architectures and loss functions for semantic segmentation. We demonstrate the effectiveness of our approach on publicly available data sets of different real domains, with the emphasis on underwater scenarios—specifically, coral reef semantic segmentation. We release new labeled data as well as an encoder trained on half a million coral reef images, which is shown to facilitate the generalization to new coral scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闲听花落完成签到,获得积分10
刚刚
蕲艾比比谁完成签到,获得积分10
刚刚
1秒前
HolmeTao发布了新的文献求助10
1秒前
www发布了新的文献求助10
1秒前
1秒前
XHH1994完成签到,获得积分10
1秒前
1秒前
时尚的靖完成签到 ,获得积分10
2秒前
2秒前
2秒前
沐阳发布了新的文献求助10
2秒前
BowieHuang应助sunyanghu369采纳,获得10
3秒前
风趣之云完成签到 ,获得积分10
3秒前
3秒前
3秒前
令狐擎宇发布了新的文献求助10
4秒前
李桂芳完成签到,获得积分10
4秒前
活力一刀发布了新的文献求助10
4秒前
深情安青应助文献快来采纳,获得10
4秒前
5秒前
含蓄又亦完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
科目三应助nnn采纳,获得10
6秒前
奋斗的橘子完成签到 ,获得积分10
6秒前
严金鱼完成签到,获得积分10
6秒前
研友_VZG7GZ应助成就乐巧采纳,获得10
6秒前
6秒前
6秒前
李大龙发布了新的文献求助10
6秒前
6秒前
6秒前
SilverPlane完成签到,获得积分10
6秒前
zcvxd发布了新的文献求助10
7秒前
7秒前
李爱国应助沅芷采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653747
求助须知:如何正确求助?哪些是违规求助? 4790572
关于积分的说明 15066040
捐赠科研通 4812391
什么是DOI,文献DOI怎么找? 2574512
邀请新用户注册赠送积分活动 1530011
关于科研通互助平台的介绍 1488724