亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CoralSeg: Learning coral segmentation from sparse annotations

计算机科学 分割 人工智能 任务(项目管理) 一般化 机器学习 深度学习 语义学(计算机科学) 编码器 模式识别(心理学) 数学分析 数学 管理 经济 程序设计语言 操作系统
作者
Íñigo Alonso,Matan Yuval,Gal Eyal,Tali Treibitz,Ana C. Murillo
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:36 (8): 1456-1477 被引量:52
标识
DOI:10.1002/rob.21915
摘要

Abstract Robotic advances and developments in sensors and acquisition systems facilitate the collection of survey data in remote and challenging scenarios. Semantic segmentation, which attempts to provide per‐pixel semantic labels, is an essential task when processing such data. Recent advances in deep learning approaches have boosted this task's performance. Unfortunately, these methods need large amounts of labeled data, which is usually a challenge in many domains. In many environmental monitoring instances, such as the coral reef example studied here, data labeling demands expert knowledge and is costly. Therefore, many data sets often present scarce and sparse image annotations or remain untouched in image libraries. This study proposes and validates an effective approach for learning semantic segmentation models from sparsely labeled data. Based on augmenting sparse annotations with the proposed adaptive superpixel segmentation propagation, we obtain similar results as if training with dense annotations, significantly reducing the labeling effort. We perform an in‐depth analysis of our labeling augmentation method as well as of different neural network architectures and loss functions for semantic segmentation. We demonstrate the effectiveness of our approach on publicly available data sets of different real domains, with the emphasis on underwater scenarios—specifically, coral reef semantic segmentation. We release new labeled data as well as an encoder trained on half a million coral reef images, which is shown to facilitate the generalization to new coral scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dreamchaser完成签到,获得积分10
4秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
BowieHuang应助科研通管家采纳,获得10
25秒前
BowieHuang应助科研通管家采纳,获得10
26秒前
33秒前
34秒前
40秒前
biebie发布了新的文献求助20
45秒前
简单完成签到 ,获得积分10
47秒前
海风吹过小镇完成签到 ,获得积分10
49秒前
biebie完成签到,获得积分10
57秒前
1分钟前
1分钟前
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
HYQ完成签到 ,获得积分10
2分钟前
星晴发布了新的文献求助10
2分钟前
2分钟前
miracle关注了科研通微信公众号
2分钟前
miracle发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
Y8发布了新的文献求助10
3分钟前
3分钟前
orixero应助星晴采纳,获得10
3分钟前
Y8完成签到,获得积分10
3分钟前
3分钟前
4分钟前
矮小的猕猴桃完成签到,获得积分10
4分钟前
GingerF应助abcd采纳,获得60
4分钟前
GingerF应助abcd采纳,获得70
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
GingerF应助abcd采纳,获得80
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534249
求助须知:如何正确求助?哪些是违规求助? 4622308
关于积分的说明 14582538
捐赠科研通 4562554
什么是DOI,文献DOI怎么找? 2500225
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450938