CoralSeg: Learning coral segmentation from sparse annotations

计算机科学 分割 人工智能 任务(项目管理) 一般化 机器学习 深度学习 语义学(计算机科学) 编码器 模式识别(心理学) 数学分析 数学 管理 经济 程序设计语言 操作系统
作者
Íñigo Alonso,Matan Yuval,Gal Eyal,Tali Treibitz,Ana C. Murillo
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:36 (8): 1456-1477 被引量:52
标识
DOI:10.1002/rob.21915
摘要

Abstract Robotic advances and developments in sensors and acquisition systems facilitate the collection of survey data in remote and challenging scenarios. Semantic segmentation, which attempts to provide per‐pixel semantic labels, is an essential task when processing such data. Recent advances in deep learning approaches have boosted this task's performance. Unfortunately, these methods need large amounts of labeled data, which is usually a challenge in many domains. In many environmental monitoring instances, such as the coral reef example studied here, data labeling demands expert knowledge and is costly. Therefore, many data sets often present scarce and sparse image annotations or remain untouched in image libraries. This study proposes and validates an effective approach for learning semantic segmentation models from sparsely labeled data. Based on augmenting sparse annotations with the proposed adaptive superpixel segmentation propagation, we obtain similar results as if training with dense annotations, significantly reducing the labeling effort. We perform an in‐depth analysis of our labeling augmentation method as well as of different neural network architectures and loss functions for semantic segmentation. We demonstrate the effectiveness of our approach on publicly available data sets of different real domains, with the emphasis on underwater scenarios—specifically, coral reef semantic segmentation. We release new labeled data as well as an encoder trained on half a million coral reef images, which is shown to facilitate the generalization to new coral scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助搬砖美少女采纳,获得10
刚刚
CL关闭了CL文献求助
刚刚
John_sdu完成签到,获得积分10
2秒前
2秒前
2秒前
zz完成签到,获得积分10
2秒前
2秒前
3秒前
悦耳发布了新的文献求助10
4秒前
qi完成签到,获得积分20
5秒前
5秒前
小野发布了新的文献求助10
5秒前
towerman完成签到,获得积分10
6秒前
6秒前
完美世界应助51新月采纳,获得10
6秒前
7秒前
zly完成签到 ,获得积分10
8秒前
阿旭发布了新的文献求助10
9秒前
丘比特应助zhang采纳,获得30
10秒前
yznfly应助现代代双采纳,获得30
11秒前
阿飞完成签到,获得积分10
12秒前
www完成签到 ,获得积分10
12秒前
Owen应助念姬采纳,获得10
13秒前
Jasper应助危机的映梦采纳,获得10
13秒前
不必要再讨论适合与否完成签到,获得积分10
13秒前
知足的憨人*-*完成签到,获得积分10
14秒前
彩色诗云完成签到 ,获得积分10
15秒前
16秒前
zora完成签到 ,获得积分10
18秒前
boxi完成签到,获得积分10
19秒前
LLL完成签到,获得积分10
20秒前
20秒前
20秒前
San_Fu发布了新的文献求助10
20秒前
一啊呀完成签到,获得积分10
21秒前
Hello应助linxue采纳,获得30
21秒前
彭于晏应助科研通管家采纳,获得10
22秒前
Rubby应助科研通管家采纳,获得10
22秒前
悦耳完成签到,获得积分20
22秒前
SHAO应助科研通管家采纳,获得30
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964046
求助须知:如何正确求助?哪些是违规求助? 3509893
关于积分的说明 11149525
捐赠科研通 3243734
什么是DOI,文献DOI怎么找? 1792182
邀请新用户注册赠送积分活动 873628
科研通“疑难数据库(出版商)”最低求助积分说明 803839