CoralSeg: Learning coral segmentation from sparse annotations

计算机科学 分割 人工智能 任务(项目管理) 一般化 机器学习 深度学习 语义学(计算机科学) 编码器 模式识别(心理学) 数学分析 数学 管理 经济 程序设计语言 操作系统
作者
Íñigo Alonso,Matan Yuval,Gal Eyal,Tali Treibitz,Ana C. Murillo
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:36 (8): 1456-1477 被引量:52
标识
DOI:10.1002/rob.21915
摘要

Abstract Robotic advances and developments in sensors and acquisition systems facilitate the collection of survey data in remote and challenging scenarios. Semantic segmentation, which attempts to provide per‐pixel semantic labels, is an essential task when processing such data. Recent advances in deep learning approaches have boosted this task's performance. Unfortunately, these methods need large amounts of labeled data, which is usually a challenge in many domains. In many environmental monitoring instances, such as the coral reef example studied here, data labeling demands expert knowledge and is costly. Therefore, many data sets often present scarce and sparse image annotations or remain untouched in image libraries. This study proposes and validates an effective approach for learning semantic segmentation models from sparsely labeled data. Based on augmenting sparse annotations with the proposed adaptive superpixel segmentation propagation, we obtain similar results as if training with dense annotations, significantly reducing the labeling effort. We perform an in‐depth analysis of our labeling augmentation method as well as of different neural network architectures and loss functions for semantic segmentation. We demonstrate the effectiveness of our approach on publicly available data sets of different real domains, with the emphasis on underwater scenarios—specifically, coral reef semantic segmentation. We release new labeled data as well as an encoder trained on half a million coral reef images, which is shown to facilitate the generalization to new coral scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
jc发布了新的文献求助10
1秒前
自信项链发布了新的文献求助20
2秒前
luping28发布了新的文献求助10
2秒前
Able_sci完成签到,获得积分10
2秒前
2秒前
vvvvyl完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
香蕉觅云应助yyyg采纳,获得10
4秒前
4秒前
空啊空完成签到 ,获得积分10
4秒前
vvvvyl发布了新的文献求助10
4秒前
曾经以亦发布了新的文献求助10
4秒前
4秒前
5秒前
最强大脑袋完成签到,获得积分10
6秒前
xixi发布了新的文献求助10
6秒前
木子李发布了新的文献求助10
7秒前
情怀应助jc采纳,获得10
8秒前
清秀的善愁完成签到,获得积分10
8秒前
zl12应助风中的丝袜采纳,获得10
10秒前
聪慧若风完成签到,获得积分10
11秒前
希望天下0贩的0应助hannah采纳,获得10
11秒前
yuyuyu完成签到,获得积分10
12秒前
12秒前
yyyg完成签到,获得积分10
13秒前
14秒前
SciGPT应助纯真的初阳采纳,获得10
15秒前
怕孤独的问芙完成签到 ,获得积分10
15秒前
9Songs完成签到,获得积分10
16秒前
yyyg发布了新的文献求助10
18秒前
18秒前
18秒前
asdfzxcv应助热心鱼采纳,获得10
19秒前
wxzk发布了新的文献求助10
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573