数学
简并能级
对数
数学分析
非线性系统
索波列夫空间
边界(拓扑)
领域(数学分析)
纯数学
数学物理
物理
量子力学
作者
Hua Chen,Jing Wang,Huiyang Xu
出处
期刊:Differential and Integral Equations
日期:2019-11-01
卷期号:32 (11/12)
被引量:1
标识
DOI:10.57262/die/1571731513
摘要
In this paper, we study the initial-boundary value problem for a class of infinitely degenerate semilinear hyperbolic equations with logarithmic nonlinearity $$ u_{tt}-\triangle_{X} u=u\log | u | , $$ where $X= (X_1,X_2,...,X_m)$ is an infinitely degenerate system of vector fields, and $$ {\triangle_X} = \sum\limits_{j = 1}^m {X_j^2} $$ is an infinitely degenerate elliptic operator. By using the logarithmic Sobolev inequality and a family of potential wells, we first prove the invariance of some sets. Then, by the Galerkin method, we obtain the global existence and blow-up in finite time of solutions with low initial energy or critical initial energy.
科研通智能强力驱动
Strongly Powered by AbleSci AI