亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

计算机科学 分割 人工智能 图像分割 编码器 变压器 卷积神经网络 地点 基于分割的对象分类 尺度空间分割 计算机视觉 模式识别(心理学) 工程类 操作系统 电气工程 语言学 哲学 电压
作者
Jieneng Chen,Yongyi Lu,Qihang Yu,Xiangde Luo,Ehsan Adeli,Yan Wang,Le Lü,Alan Yuille,Yuyin Zhou
出处
期刊:Cornell University - arXiv 被引量:2652
标识
DOI:10.48550/arxiv.2102.04306
摘要

Medical image segmentation is an essential prerequisite for developing healthcare systems, especially for disease diagnosis and treatment planning. On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard and achieved tremendous success. However, due to the intrinsic locality of convolution operations, U-Net generally demonstrates limitations in explicitly modeling long-range dependency. Transformers, designed for sequence-to-sequence prediction, have emerged as alternative architectures with innate global self-attention mechanisms, but can result in limited localization abilities due to insufficient low-level details. In this paper, we propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation. On one hand, the Transformer encodes tokenized image patches from a convolution neural network (CNN) feature map as the input sequence for extracting global contexts. On the other hand, the decoder upsamples the encoded features which are then combined with the high-resolution CNN feature maps to enable precise localization. We argue that Transformers can serve as strong encoders for medical image segmentation tasks, with the combination of U-Net to enhance finer details by recovering localized spatial information. TransUNet achieves superior performances to various competing methods on different medical applications including multi-organ segmentation and cardiac segmentation. Code and models are available at https://github.com/Beckschen/TransUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
herococa应助科研通管家采纳,获得50
1秒前
健壮的花瓣完成签到 ,获得积分10
4秒前
zyjx完成签到 ,获得积分10
9秒前
14秒前
大猫完成签到,获得积分10
16秒前
大猫发布了新的文献求助10
19秒前
21秒前
yookia应助Tonyzad采纳,获得10
26秒前
一梦丶初醒完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
35秒前
upcdelx发布了新的文献求助100
45秒前
1461644768完成签到,获得积分10
53秒前
十三完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
酷波er应助归陌采纳,获得10
1分钟前
1分钟前
1分钟前
小梦发布了新的文献求助10
1分钟前
zhengxiaoyu发布了新的文献求助10
1分钟前
slz发布了新的文献求助10
1分钟前
小蘑菇应助小梦采纳,获得10
1分钟前
归陌完成签到,获得积分10
1分钟前
1分钟前
2分钟前
GingerF应助科研通管家采纳,获得80
2分钟前
归陌发布了新的文献求助10
2分钟前
神外王001完成签到 ,获得积分10
2分钟前
科目三应助ywl采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
ywl发布了新的文献求助10
2分钟前
LIUDEHUA发布了新的文献求助10
2分钟前
少7一点8完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957025
求助须知:如何正确求助?哪些是违规求助? 3503031
关于积分的说明 11111168
捐赠科研通 3234068
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870728
科研通“疑难数据库(出版商)”最低求助积分说明 802250