Attritional evaluation of lipophilic and hydrophilic metallated phthalocyanines for oncological photodynamic therapy

光动力疗法 酞菁 磺酰罗丹明B细胞培养试剂染料 化学 脂质体 癌症研究 流式细胞术 光毒性 光敏剂 生物物理学 荧光 材料科学 光化学 细胞毒性 体外 分子生物学 医学 生物化学 生物 物理 有机化学 量子力学
作者
Lionel Mendes Dias,Farid Sharifi,Mark J de Keijzer,Bárbara Mesquita,Emilie Desclos,Jakub Kochan,Daniel J de Klerk,Daniël Ernst,Lianne R. de Haan,Leonardo Pereira Franchi,Albert C. van Wijk,Enzo M. Scutigliani,José E. Cavaco,Antônio Cláudio Tedesco,Xuan Huang,Weiwei Pan,Baoyue Ding,Przemek M. Krawczyk,Michal Heger
出处
期刊:Journal of Photochemistry and Photobiology B-biology [Elsevier BV]
卷期号:216: 112146-112146 被引量:15
标识
DOI:10.1016/j.jphotobiol.2021.112146
摘要

Oncological photodynamic therapy (PDT) relies on photosensitizers (PSs) to photo-oxidatively destroy tumor cells. Currently approved PSs yield satisfactory results in superficial and easy-to-access tumors but are less suited for solid cancers in internal organs such as the biliary system and the pancreas. For these malignancies, second-generation PSs such as metallated phthalocyanines are more appropriate. Presently it is not known which of the commonly employed metallated phtahlocyanines, namely aluminum phthalocyanine (AlPC) and zinc phthalocyanine (ZnPC) as well as their tetrasulfonated derivatives AlPCS4 and ZnPCS4, is most cytotoxic to tumor cells. This study therefore employed an attritional approach to ascertain the best metallated phthalocyanine for oncological PDT in a head-to-head comparative analysis and standardized experimental design. ZnPC and AlPC were encapsulated in PEGylated liposomes. Analyses were performed in cultured A431 cells as a template for tumor cells with a dysfunctional P53 tumor suppressor gene and EGFR overexpression. First, dark toxicity was assessed as a function of PS concentration using the WST-1 and sulforhodamine B assay. Second, time-dependent uptake and intracellular distribution were determined by flow cytometry and confocal microscopy, respectively, using the intrinsic fluorescence of the PSs. Third, the LC50 values were established for each PS at 671 nm and a radiant exposure of 15 J/cm2 following 1-h PS exposure. Finally, the mode of cell death as a function of post-PDT time and cell cycle arrest at 24 h after PDT were analyzed. In the absence of illumination, AlPC and ZnPC were not toxic to cells up to a 1.5-μM PS concentration and exposure for up to 72 h. Dark toxicity was noted for AlPCS4 at 5 μM and ZnPCS4 at 2.5 μM. Uptake of all PSs was observed as early as 1 min after PS addition to cells and increased in amplitude during a 2-h incubation period. After 60 min, the entire non-nuclear space of the cell was photosensitized, with PS accumulation in multiple subcellular structures, especially in case of AlPC and AlPCS4. PDT of cells photosensitized with ZnPC, AlPC, and AlPCS4 yielded LC50 values of 0.13 μM, 0.04 μM, and 0.81 μM, respectively, 24 h post-PDT (based on sulforhodamine B assay). ZnPCS4 did not induce notable phototoxicity, which was echoed in the mode of cell death and cell cycle arrest data. At 4 h post-PDT, the mode of cell death comprised mainly apoptosis for ZnPC and AlPC, the extent of which was gradually exacerbated in AlPC-photosensitized cells during 8 h. ZnPC-treated cells seemed to recover at 8 h post-PDT compared to 4 h post-PDT, which had been observed before in another cell line. AlPCS4 induced considerable necrosis in addition to apoptosis, whereby most of the cell death had already manifested at 2 h after PDT. During the course of 8 h, necrotic cell death transitioned into mainly late apoptotic cell death. Cell death signaling coincided with a reduction in cells in the G0/G1 phase (ZnPC, AlPC, AlPCS4) and cell cycle arrest in the S-phase (ZnPC, AlPC, AlPCS4) and G2 phase (ZnPC and AlPC). Cell cycle arrest was most profound in cells that had been photosensitized with AlPC and subjected to PDT. Liposomal AlPC is the most potent PS for oncological PDT, whereas ZnPCS4 was photodynamically inert in A431 cells. AlPC did not induce dark toxicity at PS concentrations of up to 1.5 μM, i.e., > 37 times the LC50 value, which is favorable in terms of clinical phototoxicity issues. AlPC photosensitized multiple intracellular loci, which was associated with extensive, irreversible cell death signaling that is expected to benefit treatment efficacy and possibly immunological long-term tumor control, granted that sufficient AlPC will reach the tumor in vivo. Given the differential pharmacokinetics, intracellular distribution, and cell death dynamics, liposomal AlPC may be combined with AlPCS4 in a PS cocktail to further improve PDT efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
归尘发布了新的文献求助30
2秒前
嘞是举仔发布了新的文献求助10
3秒前
4秒前
5秒前
大模型应助Ki_Ayasato采纳,获得10
6秒前
科研通AI2S应助嘞是举仔采纳,获得10
6秒前
7秒前
谨慎的晓蕾完成签到 ,获得积分10
7秒前
8秒前
呃呃完成签到,获得积分10
8秒前
Rabbit发布了新的文献求助10
9秒前
10秒前
DDEEE发布了新的文献求助10
11秒前
慕青应助大喵采纳,获得10
11秒前
丘比特应助Xian采纳,获得10
12秒前
公冶笑白发布了新的文献求助10
13秒前
14秒前
Ploaris发布了新的文献求助10
14秒前
研友_Z63kg8发布了新的文献求助20
15秒前
呃呃发布了新的文献求助10
15秒前
调皮的千万完成签到,获得积分10
15秒前
Fengliguantou发布了新的文献求助10
16秒前
hecheng0511完成签到,获得积分10
16秒前
J.发布了新的文献求助20
18秒前
ShenLi应助QDU采纳,获得10
20秒前
领导范儿应助小垃圾采纳,获得10
25秒前
研友_Z63kg8完成签到,获得积分10
25秒前
28秒前
静一静完成签到,获得积分10
28秒前
29秒前
29秒前
ycccccc完成签到 ,获得积分10
29秒前
李健应助huangyikun采纳,获得10
30秒前
30秒前
小药同学完成签到,获得积分10
31秒前
宝贝丫头发布了新的文献求助10
32秒前
白桦林泪发布了新的文献求助10
33秒前
小药同学发布了新的文献求助10
33秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531910
关于积分的说明 11255394
捐赠科研通 3270563
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809190