A cloud resource management framework for multiple online scientific workflows using cooperative reinforcement learning agents

计算机科学 云计算 供应 调度(生产过程) 分布式计算 服务质量 工作流程 强化学习 能源消耗 资源管理(计算) 计算机网络 数据库 操作系统 经济 人工智能 生物 运营管理 生态学
作者
Ali Asghari,Mohammad Karim Sohrabi,Farzin Yaghmaee
出处
期刊:Computer Networks [Elsevier]
卷期号:179: 107340-107340 被引量:35
标识
DOI:10.1016/j.comnet.2020.107340
摘要

Cloud is a common distributed environment to share strong and available resources to increase the efficiency of complex and heavy calculations. In return for the cost paid by cloud users, a variety of services have been provided for them, the quality of which has been guaranteed and the reliability of their corresponding resources have been supplied by cloud service providers. Due to the heterogeneity of resources and their several shared applications, efficient scheduling can increase the productivity of cloud resources. This will reduce users’ costs and energy consumption, considering the quality of service provided for them. Cloud resource management can be conducted to obtain several objectives. Reducing user costs, reducing energy consumption, load balancing of resources, enhancing utilization of resources, and improving availability and security are some of the key objectives in this area. Several methods have been proposed for cloud resource management, most of which are focused on one or more aspects of these objectives of cloud computing. This paper introduces a new framework consisting of multiple cooperative agents, in which, all phases of the task scheduling and resource provisioning is considered and the quality of service provided to the user is controlled. The proposed integrated model provides all task scheduling and resource provisioning processes, and its various parts serve the management of user applications and more efficient use of cloud resources. This framework works well on dependent simultaneous tasks, which have a complicated process of scheduling because of the dependence of its sub-tasks. The results of the experiments show the better performance of the proposed model in comparison with other cloud resource management methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ItachiSkuya应助小程同学采纳,获得10
刚刚
淡定的日记本完成签到,获得积分10
1秒前
2秒前
搜集达人应助五五采纳,获得150
2秒前
3秒前
Hello应助朱朱采纳,获得10
3秒前
多情高丽完成签到 ,获得积分10
4秒前
羊羊发布了新的文献求助10
4秒前
xbbccc发布了新的文献求助10
5秒前
orixero应助小张采纳,获得10
6秒前
打打应助小羊要努力采纳,获得10
7秒前
明月关注了科研通微信公众号
7秒前
allorate完成签到,获得积分0
7秒前
JO LIN发布了新的文献求助10
8秒前
来自3602完成签到,获得积分10
9秒前
Zmy完成签到,获得积分10
9秒前
bkagyin应助xiaochao采纳,获得10
10秒前
10秒前
Hello应助GEZI采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
ZD小草应助科研通管家采纳,获得30
11秒前
Orange应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
英姑应助心灵的守望采纳,获得10
12秒前
wanci应助科研通管家采纳,获得100
12秒前
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得30
12秒前
欣慰代亦应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454862
求助须知:如何正确求助?哪些是违规求助? 3050097
关于积分的说明 9020280
捐赠科研通 2738771
什么是DOI,文献DOI怎么找? 1502291
科研通“疑难数据库(出版商)”最低求助积分说明 694453
邀请新用户注册赠送积分活动 693159