A cloud resource management framework for multiple online scientific workflows using cooperative reinforcement learning agents

计算机科学 云计算 供应 调度(生产过程) 分布式计算 服务质量 工作流程 强化学习 能源消耗 资源管理(计算) 计算机网络 数据库 操作系统 经济 人工智能 生物 运营管理 生态学
作者
Ali Asghari,Mohammad Karim Sohrabi,Farzin Yaghmaee
出处
期刊:Computer Networks [Elsevier]
卷期号:179: 107340-107340 被引量:35
标识
DOI:10.1016/j.comnet.2020.107340
摘要

Cloud is a common distributed environment to share strong and available resources to increase the efficiency of complex and heavy calculations. In return for the cost paid by cloud users, a variety of services have been provided for them, the quality of which has been guaranteed and the reliability of their corresponding resources have been supplied by cloud service providers. Due to the heterogeneity of resources and their several shared applications, efficient scheduling can increase the productivity of cloud resources. This will reduce users’ costs and energy consumption, considering the quality of service provided for them. Cloud resource management can be conducted to obtain several objectives. Reducing user costs, reducing energy consumption, load balancing of resources, enhancing utilization of resources, and improving availability and security are some of the key objectives in this area. Several methods have been proposed for cloud resource management, most of which are focused on one or more aspects of these objectives of cloud computing. This paper introduces a new framework consisting of multiple cooperative agents, in which, all phases of the task scheduling and resource provisioning is considered and the quality of service provided to the user is controlled. The proposed integrated model provides all task scheduling and resource provisioning processes, and its various parts serve the management of user applications and more efficient use of cloud resources. This framework works well on dependent simultaneous tasks, which have a complicated process of scheduling because of the dependence of its sub-tasks. The results of the experiments show the better performance of the proposed model in comparison with other cloud resource management methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唯博完成签到 ,获得积分10
1秒前
李爱国应助luraaaa采纳,获得10
1秒前
xrt完成签到,获得积分10
1秒前
蓝茶发布了新的文献求助20
1秒前
2秒前
2秒前
凶狠的翅膀完成签到,获得积分10
2秒前
holland完成签到 ,获得积分10
2秒前
研友_VZG7GZ应助孙浩洋采纳,获得10
2秒前
yr888完成签到,获得积分10
2秒前
邢大志发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
huijuan完成签到,获得积分10
4秒前
钟冬燕完成签到,获得积分10
4秒前
华仔应助ji采纳,获得10
4秒前
evacqy完成签到,获得积分10
5秒前
科研渣渣完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
独特的从露完成签到,获得积分10
6秒前
tongttt完成签到,获得积分10
6秒前
lunlun完成签到,获得积分10
7秒前
爆米花应助与非采纳,获得10
7秒前
7秒前
whc121完成签到,获得积分10
8秒前
wxs完成签到,获得积分10
8秒前
汉堡包应助标致的冷梅采纳,获得10
8秒前
绿L完成签到,获得积分10
8秒前
脑洞疼应助遇见采纳,获得10
9秒前
喜悦小土豆完成签到,获得积分10
9秒前
今后应助独特的从露采纳,获得10
10秒前
10秒前
10秒前
10秒前
田様应助yfn采纳,获得10
10秒前
脑洞疼应助wtl采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836