A cloud resource management framework for multiple online scientific workflows using cooperative reinforcement learning agents

计算机科学 云计算 供应 调度(生产过程) 分布式计算 服务质量 工作流程 强化学习 能源消耗 资源管理(计算) 计算机网络 数据库 操作系统 经济 人工智能 生物 运营管理 生态学
作者
Ali Asghari,Mohammad Karim Sohrabi,Farzin Yaghmaee
出处
期刊:Computer Networks [Elsevier]
卷期号:179: 107340-107340 被引量:35
标识
DOI:10.1016/j.comnet.2020.107340
摘要

Cloud is a common distributed environment to share strong and available resources to increase the efficiency of complex and heavy calculations. In return for the cost paid by cloud users, a variety of services have been provided for them, the quality of which has been guaranteed and the reliability of their corresponding resources have been supplied by cloud service providers. Due to the heterogeneity of resources and their several shared applications, efficient scheduling can increase the productivity of cloud resources. This will reduce users’ costs and energy consumption, considering the quality of service provided for them. Cloud resource management can be conducted to obtain several objectives. Reducing user costs, reducing energy consumption, load balancing of resources, enhancing utilization of resources, and improving availability and security are some of the key objectives in this area. Several methods have been proposed for cloud resource management, most of which are focused on one or more aspects of these objectives of cloud computing. This paper introduces a new framework consisting of multiple cooperative agents, in which, all phases of the task scheduling and resource provisioning is considered and the quality of service provided to the user is controlled. The proposed integrated model provides all task scheduling and resource provisioning processes, and its various parts serve the management of user applications and more efficient use of cloud resources. This framework works well on dependent simultaneous tasks, which have a complicated process of scheduling because of the dependence of its sub-tasks. The results of the experiments show the better performance of the proposed model in comparison with other cloud resource management methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
1秒前
长情笑柳应助科研通管家采纳,获得10
1秒前
fufu发布了新的文献求助10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
zhonglv7应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
yanting完成签到,获得积分10
1秒前
小伊完成签到,获得积分20
1秒前
传奇3应助科研通管家采纳,获得20
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
Akim应助勤恳以寒采纳,获得10
2秒前
Owen应助王王碎冰冰采纳,获得10
4秒前
嗯嗯嗯完成签到,获得积分10
5秒前
5秒前
超帅秋双发布了新的文献求助10
6秒前
优秀丸子完成签到,获得积分10
6秒前
小明应助FrankJeffison采纳,获得10
6秒前
7秒前
小二郎应助12采纳,获得10
8秒前
ziyue发布了新的文献求助10
8秒前
kevindm发布了新的文献求助10
8秒前
9秒前
人工智能小配方完成签到,获得积分10
11秒前
小五完成签到 ,获得积分20
12秒前
云无意发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109