A cloud resource management framework for multiple online scientific workflows using cooperative reinforcement learning agents

计算机科学 云计算 供应 调度(生产过程) 分布式计算 服务质量 工作流程 强化学习 能源消耗 资源管理(计算) 计算机网络 数据库 操作系统 经济 人工智能 生物 运营管理 生态学
作者
Ali Asghari,Mohammad Karim Sohrabi,Farzin Yaghmaee
出处
期刊:Computer Networks [Elsevier]
卷期号:179: 107340-107340 被引量:35
标识
DOI:10.1016/j.comnet.2020.107340
摘要

Cloud is a common distributed environment to share strong and available resources to increase the efficiency of complex and heavy calculations. In return for the cost paid by cloud users, a variety of services have been provided for them, the quality of which has been guaranteed and the reliability of their corresponding resources have been supplied by cloud service providers. Due to the heterogeneity of resources and their several shared applications, efficient scheduling can increase the productivity of cloud resources. This will reduce users’ costs and energy consumption, considering the quality of service provided for them. Cloud resource management can be conducted to obtain several objectives. Reducing user costs, reducing energy consumption, load balancing of resources, enhancing utilization of resources, and improving availability and security are some of the key objectives in this area. Several methods have been proposed for cloud resource management, most of which are focused on one or more aspects of these objectives of cloud computing. This paper introduces a new framework consisting of multiple cooperative agents, in which, all phases of the task scheduling and resource provisioning is considered and the quality of service provided to the user is controlled. The proposed integrated model provides all task scheduling and resource provisioning processes, and its various parts serve the management of user applications and more efficient use of cloud resources. This framework works well on dependent simultaneous tasks, which have a complicated process of scheduling because of the dependence of its sub-tasks. The results of the experiments show the better performance of the proposed model in comparison with other cloud resource management methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助一颗星采纳,获得10
刚刚
Index发布了新的文献求助10
1秒前
刘雪晴完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
3秒前
卡他发布了新的文献求助10
4秒前
雨乐发布了新的文献求助10
6秒前
suntee发布了新的文献求助10
6秒前
8秒前
33333完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
KKKK发布了新的文献求助10
9秒前
10秒前
木易木土完成签到,获得积分10
11秒前
11秒前
天天快乐应助Fan采纳,获得10
11秒前
yu关闭了yu文献求助
12秒前
Jasper应助ychen采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
16秒前
16秒前
浮游应助科研通管家采纳,获得10
16秒前
十月完成签到,获得积分10
16秒前
能干巨人应助科研通管家采纳,获得10
16秒前
aaa完成签到,获得积分10
16秒前
李健应助科研通管家采纳,获得10
16秒前
16秒前
pluto应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
17秒前
浮游应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711738
求助须知:如何正确求助?哪些是违规求助? 5205626
关于积分的说明 15265191
捐赠科研通 4863974
什么是DOI,文献DOI怎么找? 2611057
邀请新用户注册赠送积分活动 1561379
关于科研通互助平台的介绍 1518704