化学
环加成
天然产物
周环反应
组合化学
立体化学
催化作用
分子间力
有机化学
分子
作者
Lei Gao,Cong Su,Xiaoxia Du,Ruishan Wang,Shuming Chen,Yu Zhou,Chengwei Liu,Xiaojing Liu,Runze Tian,Liyun Zhang,Kebo Xie,She Chen,Qianqian Guo,Lanping Guo,Yoshio Hano,Manabu Shimazaki,Atsushi Minami,Hideaki Oikawa,Niu Huang,K. N. Houk,Luqi Huang,Jungui Dai,Xiaoguang Lei
出处
期刊:Nature Chemistry
[Springer Nature]
日期:2020-05-25
卷期号:12 (7): 620-628
被引量:121
标识
DOI:10.1038/s41557-020-0467-7
摘要
The Diels-Alder reaction is one of the most powerful and widely used methods in synthetic chemistry for the stereospecific construction of carbon-carbon bonds. Despite the importance of Diels-Alder reactions in the biosynthesis of numerous secondary metabolites, no naturally occurring stand-alone Diels-Alderase has been demonstrated to catalyse intermolecular Diels-Alder transformations. Here we report a flavin adenine dinucleotide-dependent enzyme, Morus alba Diels-Alderase (MaDA), from Morus cell cultures, that catalyses an intermolecular [4+2] cycloaddition to produce the natural isoprenylated flavonoid chalcomoracin with a high efficiency and enantioselectivity. Density functional theory calculations and preliminary measurements of the kinetic isotope effects establish a concerted but asynchronous pericyclic pathway. Structure-guided mutagenesis and docking studies demonstrate the interactions of MaDA with the diene and dienophile to catalyse the [4+2] cycloaddition. MaDA exhibits a substrate promiscuity towards both dienes and dienophiles, which enables the expedient syntheses of structurally diverse natural products. We also report a biosynthetic intermediate probe (BIP)-based target identification strategy used to discover MaDA.
科研通智能强力驱动
Strongly Powered by AbleSci AI