RNAPosers: Machine Learning Classifiers for Ribonucleic Acid–Ligand Poses

人工智能 计算机科学 机器学习 配体(生物化学) 计算生物学 化学 生物 生物化学 受体
作者
Sahil Chhabra,Jingru Xie,Aaron T. Frank
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:124 (22): 4436-4445 被引量:41
标识
DOI:10.1021/acs.jpcb.0c02322
摘要

Determining the three-dimensional (3D) structures of ribonucleic acid (RNA)-small molecule ligand complexes is critical to understanding molecular recognition in RNA. Computer docking can, in principle, be used to predict the 3D structure of RNA-small molecule complexes. Unfortunately, retrospective analysis has shown that the scoring functions that are typically used for pose prediction tend to misclassify non-native poses as native and vice versa. Here, we use machine learning to train a set of pose classifiers that estimate the relative "nativeness" of a set of RNA-ligand poses. At the heart of our approach is the use of a pose "fingerprint" (FP) that is a composite of a set of atomic FPs, which individually encode the local "RNA environment" around ligand atoms. We found that by ranking poses based on classification scores from our machine learning classifiers, we were able to recover native-like poses better than when we ranked poses based on their docking scores. With a leave-one-out training and testing approach, we found that one of our classifiers could recover poses that were within 2.5 Å of the native poses in ∼80% of the 80 cases we examined, and, on two separate validation sets, we could recover such poses in ∼60% of the cases. Our set of classifiers, which we refer to as RNAPosers, should find utility as a tool to aid in RNA-ligand pose prediction, and so we make RNAPosers open to the academic community via https://github.com/atfrank/RNAPosers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhuling完成签到,获得积分10
刚刚
顺利的鱼完成签到,获得积分10
1秒前
re发布了新的文献求助10
1秒前
2秒前
mi发布了新的文献求助10
2秒前
科研通AI2S应助蔚蓝天空采纳,获得10
3秒前
皮灵犀完成签到,获得积分10
4秒前
lyzhou发布了新的文献求助10
5秒前
5秒前
妥妥酱发布了新的文献求助10
5秒前
holly完成签到,获得积分20
7秒前
啦啦完成签到 ,获得积分10
7秒前
李健的小迷弟应助一一采纳,获得10
8秒前
normankasimodo完成签到,获得积分10
8秒前
9秒前
9秒前
自由的凛完成签到,获得积分10
9秒前
第三个冬天的十二月完成签到 ,获得积分10
9秒前
10秒前
12秒前
12秒前
12秒前
12秒前
雨后彩虹完成签到 ,获得积分10
12秒前
昵称完成签到 ,获得积分10
12秒前
ywl完成签到,获得积分10
13秒前
16秒前
陶醉觅夏发布了新的文献求助10
16秒前
沉默觅露发布了新的文献求助10
17秒前
葵葵发布了新的文献求助50
17秒前
17秒前
17秒前
666发布了新的文献求助10
18秒前
科研通AI2S应助乐观芹采纳,获得10
18秒前
18秒前
ddak发布了新的文献求助20
18秒前
19秒前
miao完成签到,获得积分10
19秒前
善学以致用应助biabo采纳,获得10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233988
求助须知:如何正确求助?哪些是违规求助? 2880400
关于积分的说明 8215350
捐赠科研通 2547939
什么是DOI,文献DOI怎么找? 1377363
科研通“疑难数据库(出版商)”最低求助积分说明 647856
邀请新用户注册赠送积分活动 623248