RNAPosers: Machine Learning Classifiers for Ribonucleic Acid–Ligand Poses

人工智能 计算机科学 机器学习 配体(生物化学) 计算生物学 化学 生物 生物化学 受体
作者
Sahil Chhabra,Jingru Xie,Aaron T. Frank
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:124 (22): 4436-4445 被引量:41
标识
DOI:10.1021/acs.jpcb.0c02322
摘要

Determining the three-dimensional (3D) structures of ribonucleic acid (RNA)-small molecule ligand complexes is critical to understanding molecular recognition in RNA. Computer docking can, in principle, be used to predict the 3D structure of RNA-small molecule complexes. Unfortunately, retrospective analysis has shown that the scoring functions that are typically used for pose prediction tend to misclassify non-native poses as native and vice versa. Here, we use machine learning to train a set of pose classifiers that estimate the relative "nativeness" of a set of RNA-ligand poses. At the heart of our approach is the use of a pose "fingerprint" (FP) that is a composite of a set of atomic FPs, which individually encode the local "RNA environment" around ligand atoms. We found that by ranking poses based on classification scores from our machine learning classifiers, we were able to recover native-like poses better than when we ranked poses based on their docking scores. With a leave-one-out training and testing approach, we found that one of our classifiers could recover poses that were within 2.5 Å of the native poses in ∼80% of the 80 cases we examined, and, on two separate validation sets, we could recover such poses in ∼60% of the cases. Our set of classifiers, which we refer to as RNAPosers, should find utility as a tool to aid in RNA-ligand pose prediction, and so we make RNAPosers open to the academic community via https://github.com/atfrank/RNAPosers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
林森发布了新的文献求助10
3秒前
3秒前
那里有颗星星完成签到,获得积分10
3秒前
丙队长完成签到,获得积分10
4秒前
酷炫蚂蚁完成签到,获得积分20
5秒前
5秒前
科研通AI5应助叶子采纳,获得10
5秒前
感激不尽完成签到,获得积分10
5秒前
wuyudelan完成签到,获得积分10
6秒前
zstyry9998完成签到,获得积分10
8秒前
RH发布了新的文献求助10
8秒前
冷傲迎梦发布了新的文献求助10
8秒前
10秒前
weiv完成签到,获得积分10
12秒前
Teslwang完成签到,获得积分10
12秒前
12秒前
12秒前
zhangzhen发布了新的文献求助10
12秒前
英姑应助彬彬采纳,获得10
13秒前
传奇3应助maomao采纳,获得10
15秒前
稀罕你发布了新的文献求助10
16秒前
研友_VZG7GZ应助毛豆爸爸采纳,获得10
16秒前
naonao完成签到,获得积分20
16秒前
摆烂的实验室打工人完成签到,获得积分10
16秒前
Jenny发布了新的文献求助50
18秒前
19秒前
hehe完成签到,获得积分20
19秒前
naonao发布了新的文献求助10
20秒前
Glufo完成签到,获得积分10
20秒前
21秒前
qqqqqq发布了新的文献求助10
22秒前
忘羡222发布了新的文献求助30
22秒前
紫菜发布了新的文献求助10
24秒前
28秒前
28秒前
独特亦旋完成签到,获得积分20
29秒前
今后应助qqqqqq采纳,获得10
30秒前
小马甲应助飞羽采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824