A Generalization of Transformer Networks to Graphs

计算机科学 拓扑图论 理论计算机科学 变压器 折线图 算法 电压图 图形 电压 量子力学 物理
作者
Vijay Prakash Dwivedi,Xavier Bresson
出处
期刊:Cornell University - arXiv 被引量:91
标识
DOI:10.48550/arxiv.2012.09699
摘要

We propose a generalization of transformer neural network architecture for arbitrary graphs. The original transformer was designed for Natural Language Processing (NLP), which operates on fully connected graphs representing all connections between the words in a sequence. Such architecture does not leverage the graph connectivity inductive bias, and can perform poorly when the graph topology is important and has not been encoded into the node features. We introduce a graph transformer with four new properties compared to the standard model. First, the attention mechanism is a function of the neighborhood connectivity for each node in the graph. Second, the positional encoding is represented by the Laplacian eigenvectors, which naturally generalize the sinusoidal positional encodings often used in NLP. Third, the layer normalization is replaced by a batch normalization layer, which provides faster training and better generalization performance. Finally, the architecture is extended to edge feature representation, which can be critical to tasks s.a. chemistry (bond type) or link prediction (entity relationship in knowledge graphs). Numerical experiments on a graph benchmark demonstrate the performance of the proposed graph transformer architecture. This work closes the gap between the original transformer, which was designed for the limited case of line graphs, and graph neural networks, that can work with arbitrary graphs. As our architecture is simple and generic, we believe it can be used as a black box for future applications that wish to consider transformer and graphs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
刘_Young发布了新的文献求助10
2秒前
李健应助意而往南飞采纳,获得10
2秒前
2秒前
zhang狗子发布了新的文献求助10
3秒前
DDda完成签到 ,获得积分10
3秒前
SYLH应助研都不研了采纳,获得10
5秒前
Sally发布了新的文献求助10
5秒前
CodeCraft应助对方正在讲话采纳,获得10
6秒前
瘦瘦寄风完成签到,获得积分10
6秒前
ll发布了新的文献求助10
6秒前
7秒前
优美熠悦发布了新的文献求助20
8秒前
8秒前
赘婿应助暗栀采纳,获得10
9秒前
9秒前
Qdl完成签到,获得积分20
9秒前
10秒前
10秒前
10秒前
NexusExplorer应助zhao采纳,获得10
12秒前
洁净百川完成签到 ,获得积分10
13秒前
沈沈发布了新的文献求助10
13秒前
Ava应助上官问寒采纳,获得10
13秒前
wang5945发布了新的文献求助10
13秒前
Sally完成签到,获得积分10
13秒前
http发布了新的文献求助20
15秒前
mojojo发布了新的文献求助10
15秒前
慕青应助Lucy采纳,获得30
15秒前
Andy_Cheung应助清爽的山水采纳,获得20
15秒前
17秒前
太白完成签到,获得积分10
18秒前
脑洞疼应助could采纳,获得10
18秒前
田様应助Qdl采纳,获得30
21秒前
优美熠悦完成签到,获得积分10
21秒前
lizi完成签到,获得积分10
23秒前
24秒前
yyx完成签到,获得积分10
24秒前
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732936
求助须知:如何正确求助?哪些是违规求助? 3277104
关于积分的说明 10000653
捐赠科研通 2992842
什么是DOI,文献DOI怎么找? 1642467
邀请新用户注册赠送积分活动 780432
科研通“疑难数据库(出版商)”最低求助积分说明 748816