反向传播
人工神经网络
水准点(测量)
加速度
计算机科学
激活函数
人工智能
机器学习
功能(生物学)
运动(物理)
数据挖掘
模式识别(心理学)
地理
生物
物理
进化生物学
经典力学
大地测量学
作者
Ali R. Kashani,Mohsen Akhani,Charles V. Camp,Amir H. Gandomi
出处
期刊:Elsevier eBooks
[Elsevier]
日期:2020-12-16
卷期号:: 335-349
被引量:15
标识
DOI:10.1016/b978-0-12-820513-6.00006-0
摘要
In this study, the main effort was evaluating the efficiency of artificial intelligence-based machine learning algorithms in the ground motion acceleration prediction (GMPE). To this end, a backpropagation neural networks (BPNN) is selected to build a data-driven model. This research evaluates the results of 25,745 records provided by the Pacific Earthquake Engineering Research Center (PEER). A total of nine independent variables have been considered to describe ground motion acceleration. Linear regression is applied to the model as a benchmark. The effect of a number of hidden layers, different activation functions, and optimizers are also examined. The results declared that one-hidden layer BPNN with 'RMSprop' optimizer and 'Softplus' activation function performed as the best predictor.
科研通智能强力驱动
Strongly Powered by AbleSci AI