清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

High-Accuracy Remote Sensing Water Depth Retrieval for Coral Islands and Reefs Based on LSTM Neural Network

水深测量 计算机科学 珊瑚 珊瑚礁 暗礁 人工神经网络 人工智能 深度学习 卷积神经网络 遥感 地质学 海洋学
作者
Xiaomin Li,Yi Ma,Zihao Leng,Jie Zhang,Xixi Lu
出处
期刊:Journal of Coastal Research [BioOne (Coastal Education and Research Foundation)]
卷期号:102 (sp1) 被引量:6
标识
DOI:10.2112/si102-003.1
摘要

Li, X.M.; Ma, Y.; Leng, Z.H.; Zhang, J., and Lu, X.X., 2020. High-accuracy remote sensing water depth retrieval for coral islands and reefs based on LSTM neural network. In: Jung, H.-S.; Lee, S.; Ryu, J.-H., and Cui, T. (eds.), Advances in Geospatial Research of Coastal Environments. Journal of Coastal Research, Special Issue No. 102, pp. 21-32. Coconut Creek (Florida), ISSN 0749-0208.Accurate water depth data are essential to ensure navigational safety of ships operating in regions with coral islands and reefs; however, it is often difficult or impossible to conduct in situ bathymetric surveys in such areas. In this study, a Long-Short Term Memory (LSTM) neural network in deep learning was introduced for multispectral remote sensing detection of water depth, and an LSTM neural network model suitable for remote sensing water depth retrieval for coral islands and reefs was developed. The LSTM model retrieval result was optimal when using an Adam optimizer, batch size of 10 %, 2000 epochs and a 50/100 network structure. Compared with the classical Log-linear, Stumpf and improved Stumpf models, the LSTM model demonstrated better water depth retrieval capability with minimum mean absolute errors (MAEs) and mean relative errors (MREs) irrespective of whether using 300 or 2000 training points. The retrieval accuracy of the LSTM model with only 300 training points was better than the other three models with 2000 training points. Compared with SVR model, MRE of LSTM model reduced 19.03 % and 4.14 % respectively when using 300 and 2000 training points. Analysis of the Dong Island case showed that the water depth retrieval results based on the LSTM model clearly reflected the geomorphic units of the entire reef such as the reef flat, front slope (seaward slope), and patch reef. It also revealed subtle geomorphologic features of the reef flat surface and the valley system. The LSTM model demonstrated satisfactory performance for water depths of 5–25 m, with average MREs of 7 % and 9 % (minimum: 4.02 %, maximum: 14.62 %). These findings verify the application performance of the LSTM remote sensing water depth retrieval model both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小猴子完成签到 ,获得积分10
2秒前
4秒前
万能图书馆应助hh0采纳,获得150
10秒前
20秒前
CodeCraft应助hh0采纳,获得150
24秒前
48秒前
hh0发布了新的文献求助150
1分钟前
1分钟前
hh0发布了新的文献求助150
1分钟前
1分钟前
长孙归尘完成签到 ,获得积分10
1分钟前
hh0发布了新的文献求助150
1分钟前
明朗完成签到 ,获得积分10
1分钟前
1分钟前
柿饼完成签到,获得积分10
1分钟前
hh0发布了新的文献求助150
1分钟前
1分钟前
woxinyouyou完成签到,获得积分0
1分钟前
文艺的初南完成签到 ,获得积分10
1分钟前
hh0发布了新的文献求助150
2分钟前
2分钟前
2分钟前
hh0发布了新的文献求助150
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
momo完成签到,获得积分10
2分钟前
gjx完成签到 ,获得积分10
2分钟前
hh0发布了新的文献求助150
2分钟前
月老别闹完成签到 ,获得积分10
2分钟前
hh0发布了新的文献求助150
3分钟前
3分钟前
3分钟前
微解感染发布了新的文献求助10
3分钟前
hh0发布了新的文献求助150
3分钟前
digger2023完成签到 ,获得积分10
3分钟前
hh0发布了新的文献求助150
3分钟前
3分钟前
hh0发布了新的文献求助10
3分钟前
3分钟前
3分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239003
求助须知:如何正确求助?哪些是违规求助? 2884303
关于积分的说明 8232936
捐赠科研通 2552344
什么是DOI,文献DOI怎么找? 1380690
科研通“疑难数据库(出版商)”最低求助积分说明 649071
邀请新用户注册赠送积分活动 624769