High-Accuracy Remote Sensing Water Depth Retrieval for Coral Islands and Reefs Based on LSTM Neural Network

水深测量 计算机科学 珊瑚 珊瑚礁 暗礁 人工神经网络 人工智能 深度学习 卷积神经网络 遥感 地质学 海洋学
作者
Xiaomin Li,Yi Ma,Zihao Leng,Jie Zhang,Xixi Lu
出处
期刊:Journal of Coastal Research [BioOne (Coastal Education and Research Foundation)]
卷期号:102 (sp1) 被引量:6
标识
DOI:10.2112/si102-003.1
摘要

Li, X.M.; Ma, Y.; Leng, Z.H.; Zhang, J., and Lu, X.X., 2020. High-accuracy remote sensing water depth retrieval for coral islands and reefs based on LSTM neural network. In: Jung, H.-S.; Lee, S.; Ryu, J.-H., and Cui, T. (eds.), Advances in Geospatial Research of Coastal Environments. Journal of Coastal Research, Special Issue No. 102, pp. 21-32. Coconut Creek (Florida), ISSN 0749-0208.Accurate water depth data are essential to ensure navigational safety of ships operating in regions with coral islands and reefs; however, it is often difficult or impossible to conduct in situ bathymetric surveys in such areas. In this study, a Long-Short Term Memory (LSTM) neural network in deep learning was introduced for multispectral remote sensing detection of water depth, and an LSTM neural network model suitable for remote sensing water depth retrieval for coral islands and reefs was developed. The LSTM model retrieval result was optimal when using an Adam optimizer, batch size of 10 %, 2000 epochs and a 50/100 network structure. Compared with the classical Log-linear, Stumpf and improved Stumpf models, the LSTM model demonstrated better water depth retrieval capability with minimum mean absolute errors (MAEs) and mean relative errors (MREs) irrespective of whether using 300 or 2000 training points. The retrieval accuracy of the LSTM model with only 300 training points was better than the other three models with 2000 training points. Compared with SVR model, MRE of LSTM model reduced 19.03 % and 4.14 % respectively when using 300 and 2000 training points. Analysis of the Dong Island case showed that the water depth retrieval results based on the LSTM model clearly reflected the geomorphic units of the entire reef such as the reef flat, front slope (seaward slope), and patch reef. It also revealed subtle geomorphologic features of the reef flat surface and the valley system. The LSTM model demonstrated satisfactory performance for water depths of 5–25 m, with average MREs of 7 % and 9 % (minimum: 4.02 %, maximum: 14.62 %). These findings verify the application performance of the LSTM remote sensing water depth retrieval model both qualitatively and quantitatively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
why完成签到,获得积分10
刚刚
罂粟发布了新的文献求助10
1秒前
yl完成签到,获得积分10
2秒前
本征值完成签到 ,获得积分10
3秒前
3秒前
3秒前
斗南无花发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
希望天下0贩的0应助liang采纳,获得10
4秒前
小巧的洋葱完成签到,获得积分10
4秒前
smottom应助某某某采纳,获得10
4秒前
无情颖完成签到 ,获得积分10
5秒前
5秒前
Fancy应助徐六硕采纳,获得20
5秒前
鹬鸱发布了新的文献求助10
5秒前
21完成签到,获得积分10
5秒前
5秒前
飞鸿影下完成签到 ,获得积分10
6秒前
gfbh完成签到,获得积分10
7秒前
许珍乐发布了新的文献求助10
7秒前
8秒前
蘸糖冰美式完成签到,获得积分10
8秒前
LZY发布了新的文献求助10
8秒前
蓝胖子完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
赘婿应助大力的银耳汤采纳,获得10
9秒前
不安哲瀚关注了科研通微信公众号
9秒前
9秒前
烟花应助乐观的雅青采纳,获得10
10秒前
chruse发布了新的文献求助10
10秒前
舒心完成签到 ,获得积分10
10秒前
10秒前
帕芙芙完成签到,获得积分10
10秒前
13秒前
Owen应助@@@采纳,获得10
13秒前
1526918042发布了新的文献求助10
14秒前
14秒前
ssy发布了新的文献求助10
14秒前
zz发布了新的文献求助30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765726
求助须知:如何正确求助?哪些是违规求助? 5562646
关于积分的说明 15410145
捐赠科研通 4900299
什么是DOI,文献DOI怎么找? 2636348
邀请新用户注册赠送积分活动 1584578
关于科研通互助平台的介绍 1539835