High-Accuracy Remote Sensing Water Depth Retrieval for Coral Islands and Reefs Based on LSTM Neural Network

水深测量 计算机科学 珊瑚 珊瑚礁 暗礁 人工神经网络 人工智能 深度学习 卷积神经网络 遥感 地质学 海洋学
作者
Xiaomin Li,Yi Ma,Zihao Leng,Jie Zhang,Xixi Lu
出处
期刊:Journal of Coastal Research [Coastal Education and Research Foundation]
卷期号:102 (sp1) 被引量:6
标识
DOI:10.2112/si102-003.1
摘要

Li, X.M.; Ma, Y.; Leng, Z.H.; Zhang, J., and Lu, X.X., 2020. High-accuracy remote sensing water depth retrieval for coral islands and reefs based on LSTM neural network. In: Jung, H.-S.; Lee, S.; Ryu, J.-H., and Cui, T. (eds.), Advances in Geospatial Research of Coastal Environments. Journal of Coastal Research, Special Issue No. 102, pp. 21-32. Coconut Creek (Florida), ISSN 0749-0208.Accurate water depth data are essential to ensure navigational safety of ships operating in regions with coral islands and reefs; however, it is often difficult or impossible to conduct in situ bathymetric surveys in such areas. In this study, a Long-Short Term Memory (LSTM) neural network in deep learning was introduced for multispectral remote sensing detection of water depth, and an LSTM neural network model suitable for remote sensing water depth retrieval for coral islands and reefs was developed. The LSTM model retrieval result was optimal when using an Adam optimizer, batch size of 10 %, 2000 epochs and a 50/100 network structure. Compared with the classical Log-linear, Stumpf and improved Stumpf models, the LSTM model demonstrated better water depth retrieval capability with minimum mean absolute errors (MAEs) and mean relative errors (MREs) irrespective of whether using 300 or 2000 training points. The retrieval accuracy of the LSTM model with only 300 training points was better than the other three models with 2000 training points. Compared with SVR model, MRE of LSTM model reduced 19.03 % and 4.14 % respectively when using 300 and 2000 training points. Analysis of the Dong Island case showed that the water depth retrieval results based on the LSTM model clearly reflected the geomorphic units of the entire reef such as the reef flat, front slope (seaward slope), and patch reef. It also revealed subtle geomorphologic features of the reef flat surface and the valley system. The LSTM model demonstrated satisfactory performance for water depths of 5–25 m, with average MREs of 7 % and 9 % (minimum: 4.02 %, maximum: 14.62 %). These findings verify the application performance of the LSTM remote sensing water depth retrieval model both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
诚心的焱发布了新的文献求助10
2秒前
VLH完成签到,获得积分10
7秒前
熬夜不秃头完成签到,获得积分10
7秒前
SYT完成签到,获得积分10
7秒前
9秒前
侯悦茹发布了新的文献求助30
12秒前
Kal发布了新的文献求助80
13秒前
15秒前
wang发布了新的文献求助10
15秒前
科研通AI5应助孙佳硕采纳,获得10
16秒前
16秒前
拼搏的蜜蜂完成签到,获得积分10
18秒前
19秒前
科研通AI6应助钙帮弟子采纳,获得10
19秒前
19秒前
斤斤芽完成签到 ,获得积分10
20秒前
20秒前
sugarballer发布了新的文献求助10
22秒前
22秒前
华仔应助MXG采纳,获得10
23秒前
hearz发布了新的文献求助10
23秒前
舒适静丹发布了新的文献求助10
25秒前
lili发布了新的文献求助10
25秒前
勤奋酒窝发布了新的文献求助10
25秒前
ccc完成签到,获得积分10
26秒前
27秒前
envdavid完成签到,获得积分10
28秒前
28秒前
木木余完成签到 ,获得积分10
28秒前
30秒前
舟舟完成签到 ,获得积分10
32秒前
舒适静丹完成签到,获得积分10
32秒前
fan发布了新的文献求助10
34秒前
35秒前
细心寒凡发布了新的文献求助10
36秒前
38秒前
GY发布了新的文献求助20
39秒前
邵洋完成签到,获得积分10
39秒前
ccc发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4916646
求助须知:如何正确求助?哪些是违规求助? 4190063
关于积分的说明 13013239
捐赠科研通 3959493
什么是DOI,文献DOI怎么找? 2170751
邀请新用户注册赠送积分活动 1188815
关于科研通互助平台的介绍 1096866