Open-Set Domain Adaptation in Machinery Fault Diagnostics Using Instance-Level Weighted Adversarial Learning

计算机科学 对抗制 人工智能 熵(时间箭头) 机器学习 断层(地质) 数据挖掘 一般化 缩小 开放集 集合(抽象数据类型) 数学 离散数学 物理 地质学 数学分析 量子力学 地震学 程序设计语言
作者
Wei Zhang,Xiang Li,Hui Ma,Luo Zhang,Xu Li
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (11): 7445-7455 被引量:120
标识
DOI:10.1109/tii.2021.3054651
摘要

Data-driven machinery fault diagnosis methods have been successfully developed in the past decades. However, the cross-domain diagnostic problems have not been well addressed, where the training and testing data are collected under different operating conditions. Recently, domain adaptation approaches have been popularly used to bridge this gap, which extract domain-invariant features for diagnostics. Despite the effectiveness, most existing methods assume the label spaces of training and testing data are identical that indicates the fault mode sets are the same in different scenarios. In practice, new fault modes usually occur in testing, which makes the conventional methods focusing on marginal distribution alignment less effective. In order to address this problem, a deep learning-based open-set domain adaptation method is proposed in this study. Adversarial learning is introduced to extract generalized features, and an instance-level weighted mechanism is proposed to reflect the similarities of testing samples with known health states. The unknown fault mode can be effectively identified, and the known states can be also recognized. Entropy minimization scheme is further adopted to improve generalization. Experiments on two practical rotating machinery datasets validate the proposed method. The results suggest the proposed method is promising for open-set domain adaptation problems, which largely enhances the applicability of data-driven approaches in the real industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sjdove完成签到 ,获得积分10
1秒前
张建文发布了新的文献求助10
1秒前
2秒前
我是老大应助毛豆采纳,获得10
2秒前
3秒前
IBMffff完成签到 ,获得积分10
5秒前
5秒前
小马甲应助丸子的饼王采纳,获得10
5秒前
6秒前
张建文完成签到,获得积分10
7秒前
XUHYBOR发布了新的文献求助10
7秒前
小只发布了新的文献求助10
8秒前
刘刘pf发布了新的文献求助10
10秒前
小平发布了新的文献求助10
10秒前
NexusExplorer应助小奋斗采纳,获得10
12秒前
Renee应助刘刘pf采纳,获得10
14秒前
tzy完成签到,获得积分10
15秒前
16秒前
ssssbbbb完成签到,获得积分10
18秒前
wsbkeyanTong发布了新的文献求助10
20秒前
22秒前
22秒前
Spark完成签到,获得积分10
25秒前
可爱的函函应助zhangxr采纳,获得10
26秒前
小燕子完成签到,获得积分10
26秒前
研友_8oBW4Z发布了新的文献求助10
26秒前
善学以致用应助jimmy采纳,获得10
31秒前
31秒前
思源应助wsbkeyanTong采纳,获得10
33秒前
研友_8oBW4Z完成签到,获得积分10
36秒前
ding应助liq采纳,获得10
37秒前
伏波完成签到,获得积分0
39秒前
39秒前
42秒前
cc完成签到 ,获得积分10
44秒前
adoretheall发布了新的文献求助10
45秒前
46秒前
zzzhw发布了新的文献求助10
47秒前
zw完成签到,获得积分10
47秒前
liq发布了新的文献求助10
49秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161006
求助须知:如何正确求助?哪些是违规求助? 2812229
关于积分的说明 7895058
捐赠科研通 2471142
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631069
版权声明 602086