清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Open-Set Domain Adaptation in Machinery Fault Diagnostics Using Instance-Level Weighted Adversarial Learning

计算机科学 对抗制 人工智能 熵(时间箭头) 机器学习 断层(地质) 数据挖掘 一般化 缩小 集合(抽象数据类型) 数学 数学分析 物理 量子力学 地震学 程序设计语言 地质学
作者
Zhang We,Xiang Li,Hui Ma,Zhong Luo,Xu Li
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (11): 7445-7455 被引量:188
标识
DOI:10.1109/tii.2021.3054651
摘要

Data-driven machinery fault diagnosis methods have been successfully developed in the past decades. However, the cross-domain diagnostic problems have not been well addressed, where the training and testing data are collected under different operating conditions. Recently, domain adaptation approaches have been popularly used to bridge this gap, which extract domain-invariant features for diagnostics. Despite the effectiveness, most existing methods assume the label spaces of training and testing data are identical that indicates the fault mode sets are the same in different scenarios. In practice, new fault modes usually occur in testing, which makes the conventional methods focusing on marginal distribution alignment less effective. In order to address this problem, a deep learning-based open-set domain adaptation method is proposed in this study. Adversarial learning is introduced to extract generalized features, and an instance-level weighted mechanism is proposed to reflect the similarities of testing samples with known health states. The unknown fault mode can be effectively identified, and the known states can be also recognized. Entropy minimization scheme is further adopted to improve generalization. Experiments on two practical rotating machinery datasets validate the proposed method. The results suggest the proposed method is promising for open-set domain adaptation problems, which largely enhances the applicability of data-driven approaches in the real industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
科研通AI2S应助科研通管家采纳,获得30
11秒前
Ava应助科研通管家采纳,获得10
11秒前
11秒前
33秒前
elisa828完成签到,获得积分10
37秒前
紫熊发布了新的文献求助10
40秒前
量子星尘发布了新的文献求助10
46秒前
49秒前
1分钟前
lod完成签到,获得积分10
1分钟前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
1分钟前
紫熊发布了新的文献求助10
1分钟前
Liufgui应助水天一色采纳,获得10
1分钟前
fang完成签到,获得积分10
1分钟前
1分钟前
1分钟前
xiaozou55完成签到 ,获得积分10
1分钟前
紫熊发布了新的文献求助20
2分钟前
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
李健应助科研通管家采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
drhwang完成签到,获得积分10
2分钟前
2分钟前
小强完成签到 ,获得积分10
2分钟前
kangshuai完成签到,获得积分10
2分钟前
水天一色发布了新的文献求助10
2分钟前
3分钟前
Liufgui应助乏味采纳,获得10
3分钟前
3分钟前
bellapp完成签到 ,获得积分10
3分钟前
3分钟前
Liufgui应助Fern采纳,获得30
3分钟前
3分钟前
3分钟前
3分钟前
DSUNNY完成签到 ,获得积分10
3分钟前
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015340
求助须知:如何正确求助?哪些是违规求助? 3555298
关于积分的说明 11317940
捐赠科研通 3288605
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983