Open-Set Domain Adaptation in Machinery Fault Diagnostics Using Instance-Level Weighted Adversarial Learning

计算机科学 对抗制 人工智能 熵(时间箭头) 机器学习 断层(地质) 数据挖掘 一般化 缩小 开放集 集合(抽象数据类型) 数学 离散数学 物理 地质学 数学分析 量子力学 地震学 程序设计语言
作者
Wei Zhang,Xiang Li,Hui Ma,Luo Zhang,Xu Li
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (11): 7445-7455 被引量:120
标识
DOI:10.1109/tii.2021.3054651
摘要

Data-driven machinery fault diagnosis methods have been successfully developed in the past decades. However, the cross-domain diagnostic problems have not been well addressed, where the training and testing data are collected under different operating conditions. Recently, domain adaptation approaches have been popularly used to bridge this gap, which extract domain-invariant features for diagnostics. Despite the effectiveness, most existing methods assume the label spaces of training and testing data are identical that indicates the fault mode sets are the same in different scenarios. In practice, new fault modes usually occur in testing, which makes the conventional methods focusing on marginal distribution alignment less effective. In order to address this problem, a deep learning-based open-set domain adaptation method is proposed in this study. Adversarial learning is introduced to extract generalized features, and an instance-level weighted mechanism is proposed to reflect the similarities of testing samples with known health states. The unknown fault mode can be effectively identified, and the known states can be also recognized. Entropy minimization scheme is further adopted to improve generalization. Experiments on two practical rotating machinery datasets validate the proposed method. The results suggest the proposed method is promising for open-set domain adaptation problems, which largely enhances the applicability of data-driven approaches in the real industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenbo完成签到,获得积分0
刚刚
1秒前
勤奋弋完成签到,获得积分10
4秒前
无名欧文完成签到,获得积分10
5秒前
7秒前
虚心海燕发布了新的文献求助10
7秒前
黄啊涛关注了科研通微信公众号
7秒前
7秒前
JamesPei应助Rainbow采纳,获得10
8秒前
一只科研狗完成签到,获得积分10
8秒前
pp0118完成签到 ,获得积分10
8秒前
余呀余完成签到 ,获得积分10
9秒前
10秒前
善良易文关注了科研通微信公众号
10秒前
10秒前
瑶一瑶发布了新的文献求助10
11秒前
yhy完成签到,获得积分10
11秒前
纯真雁菱完成签到,获得积分10
11秒前
sun发布了新的文献求助10
11秒前
w.h完成签到,获得积分10
12秒前
12秒前
Schmoo发布了新的文献求助10
12秒前
赘婿应助Zxc采纳,获得10
12秒前
明理雨筠完成签到,获得积分10
13秒前
Ava应助Chen采纳,获得10
14秒前
14秒前
14秒前
Xing发布了新的文献求助10
14秒前
w.h发布了新的文献求助10
15秒前
搜集达人应助狼来了aas采纳,获得10
16秒前
17秒前
点点发布了新的文献求助10
17秒前
19秒前
19秒前
blingbling完成签到,获得积分10
19秒前
19秒前
黄啊涛发布了新的文献求助10
19秒前
19秒前
嘻嘻发布了新的文献求助30
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849