Open-Set Domain Adaptation in Machinery Fault Diagnostics Using Instance-Level Weighted Adversarial Learning

计算机科学 对抗制 人工智能 熵(时间箭头) 机器学习 断层(地质) 数据挖掘 一般化 缩小 集合(抽象数据类型) 数学 程序设计语言 地震学 数学分析 地质学 物理 量子力学
作者
Zhang We,Xiang Li,Hui Ma,Zhong Luo,Xu Li
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (11): 7445-7455 被引量:188
标识
DOI:10.1109/tii.2021.3054651
摘要

Data-driven machinery fault diagnosis methods have been successfully developed in the past decades. However, the cross-domain diagnostic problems have not been well addressed, where the training and testing data are collected under different operating conditions. Recently, domain adaptation approaches have been popularly used to bridge this gap, which extract domain-invariant features for diagnostics. Despite the effectiveness, most existing methods assume the label spaces of training and testing data are identical that indicates the fault mode sets are the same in different scenarios. In practice, new fault modes usually occur in testing, which makes the conventional methods focusing on marginal distribution alignment less effective. In order to address this problem, a deep learning-based open-set domain adaptation method is proposed in this study. Adversarial learning is introduced to extract generalized features, and an instance-level weighted mechanism is proposed to reflect the similarities of testing samples with known health states. The unknown fault mode can be effectively identified, and the known states can be also recognized. Entropy minimization scheme is further adopted to improve generalization. Experiments on two practical rotating machinery datasets validate the proposed method. The results suggest the proposed method is promising for open-set domain adaptation problems, which largely enhances the applicability of data-driven approaches in the real industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FeiL发布了新的文献求助10
1秒前
five43发布了新的文献求助10
1秒前
CodeCraft应助缓慢洋葱采纳,获得10
2秒前
完美世界应助Lukomere采纳,获得10
2秒前
生动梦松应助彭祖宇采纳,获得30
2秒前
2秒前
daorenz发布了新的文献求助10
2秒前
xiaoxiao发布了新的文献求助10
3秒前
zhhua完成签到,获得积分10
4秒前
4秒前
lvjiahui发布了新的文献求助10
4秒前
haojiesong发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
123发布了新的文献求助20
7秒前
7秒前
ardejiang发布了新的文献求助10
7秒前
喜乐多完成签到,获得积分10
7秒前
小蘑菇应助Will采纳,获得10
8秒前
8秒前
9秒前
丘比特应助卡卡采纳,获得10
10秒前
10秒前
华仔应助aaaaa采纳,获得10
10秒前
yxy完成签到,获得积分10
11秒前
城南发布了新的文献求助10
11秒前
斯文败类应助Lignin采纳,获得10
11秒前
12秒前
herui发布了新的文献求助20
12秒前
隐形牛排发布了新的文献求助10
12秒前
明理含之发布了新的文献求助10
12秒前
可爱的函函应助ccc采纳,获得10
12秒前
bkagyin应助大朋采纳,获得10
12秒前
无为完成签到,获得积分10
12秒前
CasterL发布了新的文献求助20
13秒前
13秒前
13秒前
lvjiahui完成签到,获得积分10
13秒前
Orange应助皮灵犀采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559435
求助须知:如何正确求助?哪些是违规求助? 3985900
关于积分的说明 12340835
捐赠科研通 3656514
什么是DOI,文献DOI怎么找? 2014495
邀请新用户注册赠送积分活动 1049235
科研通“疑难数据库(出版商)”最低求助积分说明 937558