Open-Set Domain Adaptation in Machinery Fault Diagnostics Using Instance-Level Weighted Adversarial Learning

计算机科学 对抗制 人工智能 熵(时间箭头) 机器学习 断层(地质) 数据挖掘 一般化 缩小 集合(抽象数据类型) 数学 程序设计语言 地震学 数学分析 地质学 物理 量子力学
作者
Zhang We,Xiang Li,Hui Ma,Zhong Luo,Xu Li
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (11): 7445-7455 被引量:188
标识
DOI:10.1109/tii.2021.3054651
摘要

Data-driven machinery fault diagnosis methods have been successfully developed in the past decades. However, the cross-domain diagnostic problems have not been well addressed, where the training and testing data are collected under different operating conditions. Recently, domain adaptation approaches have been popularly used to bridge this gap, which extract domain-invariant features for diagnostics. Despite the effectiveness, most existing methods assume the label spaces of training and testing data are identical that indicates the fault mode sets are the same in different scenarios. In practice, new fault modes usually occur in testing, which makes the conventional methods focusing on marginal distribution alignment less effective. In order to address this problem, a deep learning-based open-set domain adaptation method is proposed in this study. Adversarial learning is introduced to extract generalized features, and an instance-level weighted mechanism is proposed to reflect the similarities of testing samples with known health states. The unknown fault mode can be effectively identified, and the known states can be also recognized. Entropy minimization scheme is further adopted to improve generalization. Experiments on two practical rotating machinery datasets validate the proposed method. The results suggest the proposed method is promising for open-set domain adaptation problems, which largely enhances the applicability of data-driven approaches in the real industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Akim应助曲奇采纳,获得10
2秒前
木子发布了新的文献求助30
2秒前
有米饭没完成签到 ,获得积分10
3秒前
NexusExplorer应助洁净的醉波采纳,获得10
3秒前
apex完成签到,获得积分10
4秒前
稳重代芹发布了新的文献求助10
4秒前
科研通AI5应助Hairee采纳,获得50
4秒前
4秒前
李健的粉丝团团长应助hyh采纳,获得10
4秒前
4秒前
熊本熊完成签到,获得积分10
4秒前
情怀应助dingdign采纳,获得10
6秒前
张文博发布了新的文献求助10
6秒前
T_KYG发布了新的文献求助10
6秒前
6秒前
我是老大应助海姆达尔采纳,获得20
8秒前
9秒前
丘比特应助ari采纳,获得10
10秒前
Jane2024发布了新的文献求助10
11秒前
ding应助Jing采纳,获得10
11秒前
甜蜜帽子发布了新的文献求助10
11秒前
12秒前
彭于晏应助小刘采纳,获得10
12秒前
今后应助张文博采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
666完成签到 ,获得积分10
14秒前
大浪淘沙完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
15秒前
人问关注了科研通微信公众号
17秒前
清脆亦寒发布了新的文献求助10
17秒前
17秒前
20秒前
看蓝雨完成签到,获得积分10
20秒前
郝誉发布了新的文献求助10
20秒前
大模型应助甘乐采纳,获得10
20秒前
Hairee发布了新的文献求助50
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124283
求助须知:如何正确求助?哪些是违规求助? 4328544
关于积分的说明 13487638
捐赠科研通 4162942
什么是DOI,文献DOI怎么找? 2281981
邀请新用户注册赠送积分活动 1283241
关于科研通互助平台的介绍 1222434