Real-Time Electron Microscopy of Nanocrystal Synthesis, Transformations, and Self-Assembly in Solution

纳米晶 纳米技术 纳米结构 化学物理 材料科学 软物质 电子显微镜 胶体 化学 物理 光学 物理化学
作者
Peter Sutter,Eli Sutter
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (1): 11-21 被引量:10
标识
DOI:10.1021/acs.accounts.0c00678
摘要

ConspectusSolution-phase processes such as colloidal synthesis and transformations have enabled the formation of nanocrystals with exquisite control over size, shape, and composition. Self-assembly, in solution or at phase boundaries, can arrange such nanocrystal building blocks into ordered superlattices and dynamically reconfigurable "smart" materials. Ultimately, continued improvements in our ability to direct nanocrystal matter depend on progress in understanding colloidal chemistry and self-assembly in solution. The traditional approach for investigating the underlying, inherently dynamic processes involves sampling at different stages combined with ex situ characterization, for example, using electron microscopy. In situ studies have been restricted to a few methods capable of measuring in bulk liquids, either in reciprocal space by diffraction or scattering or using spatially averaging (e.g., optical) measurements. These strategies face clear limitations in obtaining mechanistic information, and they are unable to address heterogeneous systems that may harbor rich sets of configurations with different local properties. The development of microfabricated cells that hermetically encapsulate bulk solutions between ultrathin (electron transparent) membranes has paved the way for studying processes in liquids in real time by electron microscopy at resolution down to the atomic scale. Electrons interact much more strongly with matter than other probes, for example, X-rays. In ordinary inorganic samples, the main effects are atom displacements and defect formation via knock-on and ionization damage. In liquid-cell electron microscopy, the interaction of the beam with both the suspended nanostructures and the solution creates more diverse effects, so the straightforward scenario of imaging unperturbed nanocrystal chemistry in solution is rarely realized.In this Account, we discuss applications of real-time electron microscopy to the analysis of nanocrystal synthesis, transformations, and self-assembly in solution. While in the simplest case the effects of the electron beam are negligible, the interaction with high-energy electrons often provides excitation or stimulus for solution-phase processes or opens up competing chemical pathways. Real-time observations of self-assembly demonstrate particularly clearly the power of in situ microscopy in identifying key nucleation and growth mechanisms and providing information about preferred structural motifs that can be analyzed to quantify the balance of forces and the role of entropy in stabilizing ordered assemblies. Modifications of the solution by the electron beam can provide stimuli for on-demand self-assembly, for example, via an acid spike due to water radiolysis that locally lowers the pH in the imaged area. While in this and other cases (e.g., colloidal synthesis), beam-induced radicals become part of the experimental design, in imaging redox reactions such as galvanic transformations of nanocrystal templates, radicals need to be managed and if possible eliminated by suitable scavengers. Finally, excitation by the imaging electron beam can transfer energy to individual nanocrystals in solution, thus driving nonthermal (e.g., plasmon-mediated) synthesis or other chemistry while following the reaction progress with high resolution. Overall, with validation by ex situ control experiments, the unique ability of observing processes in solution at the nanometer scale should make liquid-cell electron microscopy an integral part of the toolkit for designing novel inorganic nanocrystal architectures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
非凡梦完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6应助诗歌节公社采纳,获得10
3秒前
wangye发布了新的文献求助10
3秒前
3秒前
wanci应助不知道采纳,获得10
3秒前
马老师发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
yunshan发布了新的文献求助10
6秒前
打打应助肆_采纳,获得10
7秒前
温婉的怀寒完成签到,获得积分20
7秒前
烟花应助三次方采纳,获得10
9秒前
choaiho关注了科研通微信公众号
10秒前
11秒前
11秒前
12秒前
12秒前
不知道完成签到,获得积分20
12秒前
Orange应助霸气映之采纳,获得10
12秒前
13秒前
wangye完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
wanci发布了新的文献求助10
15秒前
古日方原完成签到,获得积分10
15秒前
Yimi发布了新的文献求助10
16秒前
16秒前
滴水拨纹完成签到,获得积分10
17秒前
笨笨水儿发布了新的文献求助10
17秒前
清脆的早完成签到,获得积分10
17秒前
嚯嚯嚯发布了新的文献求助10
17秒前
syalonyui发布了新的文献求助10
17秒前
不知道发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
晨晨完成签到 ,获得积分10
19秒前
马老师完成签到,获得积分20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031