已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Real-Time Electron Microscopy of Nanocrystal Synthesis, Transformations, and Self-Assembly in Solution

纳米晶 纳米技术 纳米结构 化学物理 材料科学 软物质 电子显微镜 胶体 化学 物理 光学 物理化学
作者
Peter Sutter,Eli Sutter
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (1): 11-21 被引量:10
标识
DOI:10.1021/acs.accounts.0c00678
摘要

ConspectusSolution-phase processes such as colloidal synthesis and transformations have enabled the formation of nanocrystals with exquisite control over size, shape, and composition. Self-assembly, in solution or at phase boundaries, can arrange such nanocrystal building blocks into ordered superlattices and dynamically reconfigurable "smart" materials. Ultimately, continued improvements in our ability to direct nanocrystal matter depend on progress in understanding colloidal chemistry and self-assembly in solution. The traditional approach for investigating the underlying, inherently dynamic processes involves sampling at different stages combined with ex situ characterization, for example, using electron microscopy. In situ studies have been restricted to a few methods capable of measuring in bulk liquids, either in reciprocal space by diffraction or scattering or using spatially averaging (e.g., optical) measurements. These strategies face clear limitations in obtaining mechanistic information, and they are unable to address heterogeneous systems that may harbor rich sets of configurations with different local properties. The development of microfabricated cells that hermetically encapsulate bulk solutions between ultrathin (electron transparent) membranes has paved the way for studying processes in liquids in real time by electron microscopy at resolution down to the atomic scale. Electrons interact much more strongly with matter than other probes, for example, X-rays. In ordinary inorganic samples, the main effects are atom displacements and defect formation via knock-on and ionization damage. In liquid-cell electron microscopy, the interaction of the beam with both the suspended nanostructures and the solution creates more diverse effects, so the straightforward scenario of imaging unperturbed nanocrystal chemistry in solution is rarely realized.In this Account, we discuss applications of real-time electron microscopy to the analysis of nanocrystal synthesis, transformations, and self-assembly in solution. While in the simplest case the effects of the electron beam are negligible, the interaction with high-energy electrons often provides excitation or stimulus for solution-phase processes or opens up competing chemical pathways. Real-time observations of self-assembly demonstrate particularly clearly the power of in situ microscopy in identifying key nucleation and growth mechanisms and providing information about preferred structural motifs that can be analyzed to quantify the balance of forces and the role of entropy in stabilizing ordered assemblies. Modifications of the solution by the electron beam can provide stimuli for on-demand self-assembly, for example, via an acid spike due to water radiolysis that locally lowers the pH in the imaged area. While in this and other cases (e.g., colloidal synthesis), beam-induced radicals become part of the experimental design, in imaging redox reactions such as galvanic transformations of nanocrystal templates, radicals need to be managed and if possible eliminated by suitable scavengers. Finally, excitation by the imaging electron beam can transfer energy to individual nanocrystals in solution, thus driving nonthermal (e.g., plasmon-mediated) synthesis or other chemistry while following the reaction progress with high resolution. Overall, with validation by ex situ control experiments, the unique ability of observing processes in solution at the nanometer scale should make liquid-cell electron microscopy an integral part of the toolkit for designing novel inorganic nanocrystal architectures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助等待的小兔子采纳,获得10
1秒前
Hazel完成签到,获得积分10
5秒前
6秒前
笑点低完成签到 ,获得积分10
7秒前
等待的小兔子完成签到,获得积分20
10秒前
10秒前
Ss完成签到 ,获得积分10
10秒前
11秒前
11秒前
14秒前
不安可愁完成签到,获得积分10
14秒前
从容面包发布了新的文献求助10
14秒前
15秒前
18秒前
威武灵阳完成签到,获得积分10
19秒前
黄涛涛发布了新的文献求助10
20秒前
Freedom_1996完成签到,获得积分10
20秒前
22秒前
扫地888完成签到 ,获得积分10
23秒前
云影箫羽完成签到 ,获得积分10
26秒前
嘻嘻汐泽发布了新的文献求助10
26秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
我是老大应助科研通管家采纳,获得10
27秒前
27秒前
烊烊完成签到 ,获得积分10
32秒前
嘻嘻汐泽完成签到,获得积分10
34秒前
39秒前
39秒前
samtol完成签到,获得积分10
39秒前
医疗废物专用车乘客完成签到,获得积分10
39秒前
如约而至完成签到 ,获得积分10
43秒前
47秒前
丽娘完成签到 ,获得积分10
51秒前
silence完成签到 ,获得积分10
51秒前
诚心溪灵发布了新的文献求助20
52秒前
54秒前
58秒前
1分钟前
1分钟前
默默发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5076871
求助须知:如何正确求助?哪些是违规求助? 4296247
关于积分的说明 13386588
捐赠科研通 4118438
什么是DOI,文献DOI怎么找? 2255317
邀请新用户注册赠送积分活动 1259804
关于科研通互助平台的介绍 1192846