清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Mechanical Immunoengineering of T cells for Therapeutic Applications

免疫系统 免疫疗法 嵌合抗原受体 癌症免疫疗法 旁观者效应 获得性免疫系统 癌症 免疫学 T细胞 医学 生物 癌症研究 内科学
作者
Kewen Lei,Armand Kurum,Li Tang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:53 (12): 2777-2790 被引量:31
标识
DOI:10.1021/acs.accounts.0c00486
摘要

ConspectusT cells, a key component in adaptive immunity, are central to many immunotherapeutic modalities aimed at treating various diseases including cancer, infectious diseases, and autoimmune disorders. The past decade has witnessed tremendous progress in immunotherapy, which aims at activation or suppression of the immune responses for disease treatments. Most strikingly, cancer immunotherapy has led to curative responses in a fraction of patients with relapsed or refractory cancers. However, extending those clinical benefits to a majority of cancer patients remains challenging. In order to improve both efficacy and safety of T cell-based immunotherapies, significant effort has been devoted to modulating biochemical signals to enhance T cell proliferation, effector functions, and longevity. Such strategies include discovery of new immune checkpoints, design of armored chimeric antigen receptor (CAR) T cells, and targeted delivery of stimulatory cytokines and so on.Despite the intense global research effort in developing novel cancer immunotherapies, a major dimension of the interactions between cancer and the immune system, its biomechanical aspect, has been largely underappreciated. Throughout their lifecycle, T cells constantly survey a multitude of organs and tissues and experience diverse biomechanical environments, such as shear force in the blood flow and a broad range of tissue stiffness. Furthermore, biomechanical properties of tissues or cells may be altered in disease and inflammation. Biomechanical cues, including both passive mechanical cues and active mechanical forces, have been shown to govern T cell development, activation, migration, differentiation, and effector functions. In other words, T cells can sense, respond to, and adapt to both passive mechanical cues and active mechanical forces.Biomechanical cues have been intensively studied at a fundamental level but are yet to be extensively incorporated in the design of immunotherapies. Nonetheless, the growing knowledge of T cell mechanobiology has formed the basis for the development of novel engineering strategies to mechanically modulate T cell immunity, a nascent field that we termed "mechanical immunoengineering". Mechanical immunoengineering exploits biomechanical cues (e.g., stiffness and external forces) to modulate T cell differentiation, proliferation, effector functions, etc., for diagnostic or therapeutic applications. It provides an additional dimension, complementary to traditional modulation of biochemical cues (e.g., antigen density and co-stimulatory signals), to tailor T cell immune responses and enhance therapeutic outcomes. For example, stiff antigen-presenting matrices have been shown to enhance T cell proliferation independently of the intensity of biochemical stimulatory signals. Current strategies of mechanical immunoengineering of T cells can be categorized into two major fields including passive mechanical cue-oriented and active force-oriented strategies. In this Account, we first present a brief overview of T cell mechanobiology. Next, we summarize recent advances in mechanical immunoengineering, discuss the roles of chemistry and material science in the development of these engineering strategies, and highlight potential therapeutic applications. Finally, we present our perspective on the future directions in mechanical immunoengineering and critical steps to translate mechanical immunoengineering strategies into therapeutic applications in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bookgg完成签到 ,获得积分10
10秒前
XZZ完成签到 ,获得积分10
11秒前
丘比特应助丹尼尔采纳,获得10
23秒前
哥哥发布了新的文献求助10
26秒前
心静自然好完成签到 ,获得积分10
30秒前
夜渡河关注了科研通微信公众号
31秒前
34秒前
cherry_mm发布了新的文献求助10
38秒前
FashionBoy应助哥哥采纳,获得10
39秒前
缘分完成签到,获得积分10
46秒前
胤嘉完成签到 ,获得积分10
47秒前
夜渡河发布了新的文献求助10
52秒前
路路完成签到 ,获得积分10
53秒前
54秒前
王kk完成签到 ,获得积分10
56秒前
哥哥完成签到,获得积分10
1分钟前
1分钟前
丹尼尔发布了新的文献求助10
1分钟前
SYLH应助雨辰采纳,获得10
1分钟前
J陆lululu完成签到 ,获得积分10
1分钟前
Gary完成签到 ,获得积分10
1分钟前
lj完成签到 ,获得积分10
1分钟前
王波完成签到 ,获得积分10
1分钟前
雨辰完成签到,获得积分10
1分钟前
逆流的鱼完成签到 ,获得积分10
2分钟前
yinyin完成签到 ,获得积分10
2分钟前
脑洞疼应助一彤展翅采纳,获得30
2分钟前
whh123完成签到 ,获得积分10
2分钟前
追寻的续完成签到 ,获得积分10
2分钟前
lalala完成签到 ,获得积分10
2分钟前
爱学习的婷完成签到 ,获得积分10
2分钟前
2分钟前
ECHO完成签到,获得积分10
2分钟前
边曦完成签到 ,获得积分0
2分钟前
2分钟前
游01完成签到 ,获得积分10
2分钟前
2分钟前
潘fujun完成签到 ,获得积分10
2分钟前
2分钟前
默默尔安发布了新的文献求助10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555826
求助须知:如何正确求助?哪些是违规求助? 3131443
关于积分的说明 9391104
捐赠科研通 2831132
什么是DOI,文献DOI怎么找? 1556396
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890