亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Network analysis for the symptom of depression with Children's Depression Inventory in a large sample of school-aged children

悲伤 孤独 无血性 心理学 萧条(经济学) 临床心理学 友谊 抑郁症状 精神科 愤怒 发展心理学 焦虑 精神分裂症(面向对象编程) 经济 宏观经济学 社会心理学
作者
Dohyun Kim,Ho‐Jang Kwon,Mina Ha,Myung Ho Lim,Kyoung Min Kim
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:281: 256-263 被引量:31
标识
DOI:10.1016/j.jad.2020.12.002
摘要

Background: Depressive disorders have various symptom presentations, which may have complex and dynamic interactions. This study aimed to investigate the network structures underlying the symptoms and to identify the central symptoms of depression in school-aged children. Methods: Participants were a large community sample of elementary school children aged 6 to 12 years (N = 10,233). To assess the depressive symptoms, we utilized the Children's Depression Inventory (CDI). We binarized the scores on the CDI to generate a symptom network using the eLasso method, based on the Ising model. We evaluated the centralities in individual symptoms using the network centrality indices and the associations between symptoms. Results: Of the symptoms, loneliness, self-hatred, school dislike, and low self-esteem were the most central symptoms in the network of depressive symptoms. School work difficulty–school performance decrement, sadness–crying, self-hatred–negative body image, low self-esteem–fight, anhedonia–school dislike, sadness–loneliness, self-deprecation–school work difficulty, and school dislike–lack of friendship had significantly higher edge weight than most edges. The estimated network between the symptoms was robust to stability and accuracy tests. Limitations: Participants were not clinical but community samples, who show lower level of symptoms. Conclusion: The present symptom network analysis provided important insights on various interconnectivities between individual symptoms in childhood depression and on the central symptoms. In addition, our findings presented both similarities and differences with a previous Western study, thus, warranting future cross-cultural studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逆光完成签到 ,获得积分10
3秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
勤劳念薇完成签到 ,获得积分10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
传奇3应助deoyar采纳,获得10
7秒前
CX330完成签到 ,获得积分10
10秒前
10秒前
rengar完成签到,获得积分10
11秒前
12秒前
寄风发布了新的文献求助10
15秒前
18秒前
无名应助闪闪的绣连采纳,获得20
23秒前
deoyar完成签到,获得积分10
25秒前
25秒前
bkagyin应助忧心的迎天采纳,获得10
25秒前
烟花应助xxl采纳,获得10
26秒前
27秒前
胡胡完成签到 ,获得积分10
27秒前
Iris完成签到 ,获得积分10
27秒前
Lusteri发布了新的文献求助10
30秒前
vber完成签到 ,获得积分10
33秒前
马宁婧完成签到 ,获得积分10
34秒前
完美世界应助Lusteri采纳,获得10
37秒前
40秒前
yuyuyu完成签到,获得积分10
40秒前
45秒前
xxl发布了新的文献求助10
49秒前
Lucky完成签到,获得积分10
51秒前
袁建波完成签到 ,获得积分10
55秒前
彭于晏应助怡然的友容采纳,获得10
55秒前
59秒前
59秒前
shui发布了新的文献求助10
1分钟前
1分钟前
jiyuan完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634505
求助须知:如何正确求助?哪些是违规求助? 4731390
关于积分的说明 14988643
捐赠科研通 4792266
什么是DOI,文献DOI怎么找? 2559428
邀请新用户注册赠送积分活动 1519756
关于科研通互助平台的介绍 1479872