亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Network analysis for the symptom of depression with Children's Depression Inventory in a large sample of school-aged children

悲伤 孤独 无血性 心理学 萧条(经济学) 临床心理学 友谊 抑郁症状 精神科 愤怒 发展心理学 焦虑 社会心理学 精神分裂症(面向对象编程) 经济 宏观经济学
作者
Dohyun Kim,Ho‐Jang Kwon,Mina Ha,Myung Ho Lim,Kyoung Min Kim
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:281: 256-263 被引量:31
标识
DOI:10.1016/j.jad.2020.12.002
摘要

Background: Depressive disorders have various symptom presentations, which may have complex and dynamic interactions. This study aimed to investigate the network structures underlying the symptoms and to identify the central symptoms of depression in school-aged children. Methods: Participants were a large community sample of elementary school children aged 6 to 12 years (N = 10,233). To assess the depressive symptoms, we utilized the Children's Depression Inventory (CDI). We binarized the scores on the CDI to generate a symptom network using the eLasso method, based on the Ising model. We evaluated the centralities in individual symptoms using the network centrality indices and the associations between symptoms. Results: Of the symptoms, loneliness, self-hatred, school dislike, and low self-esteem were the most central symptoms in the network of depressive symptoms. School work difficulty–school performance decrement, sadness–crying, self-hatred–negative body image, low self-esteem–fight, anhedonia–school dislike, sadness–loneliness, self-deprecation–school work difficulty, and school dislike–lack of friendship had significantly higher edge weight than most edges. The estimated network between the symptoms was robust to stability and accuracy tests. Limitations: Participants were not clinical but community samples, who show lower level of symptoms. Conclusion: The present symptom network analysis provided important insights on various interconnectivities between individual symptoms in childhood depression and on the central symptoms. In addition, our findings presented both similarities and differences with a previous Western study, thus, warranting future cross-cultural studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
种下梧桐树完成签到 ,获得积分10
1秒前
12秒前
大个应助绿树成荫采纳,获得10
16秒前
坚定的小蘑菇完成签到 ,获得积分10
16秒前
22秒前
Timelapse发布了新的文献求助10
25秒前
45秒前
49秒前
57秒前
lllll完成签到,获得积分20
1分钟前
1分钟前
Timelapse发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Timelapse发布了新的文献求助10
1分钟前
1分钟前
黑摄会阿Fay完成签到,获得积分10
1分钟前
BowieHuang应助Timelapse采纳,获得10
1分钟前
甜橙完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
NattyPoe应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得20
1分钟前
2分钟前
852应助一碗鱼采纳,获得10
2分钟前
wanci应助andrele采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
一碗鱼发布了新的文献求助10
2分钟前
2分钟前
theo完成签到 ,获得积分10
2分钟前
糕冷草莓完成签到,获得积分10
2分钟前
英姑应助一碗鱼采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
一碗鱼发布了新的文献求助10
3分钟前
一碗鱼完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772792
求助须知:如何正确求助?哪些是违规求助? 5602544
关于积分的说明 15430087
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639585
邀请新用户注册赠送积分活动 1587478
关于科研通互助平台的介绍 1542423