Dynamic Process Planning using Digital Twins and Reinforcement Learning

强化学习 计算机科学 过程(计算) 规划师 动作(物理) 生产(经济) 人工智能 工业工程 机器学习 工程类 量子力学 操作系统 物理 宏观经济学 经济
作者
Zai Müller‐Zhang,Pablo Oliveira Antonino,Thomas Kühn
标识
DOI:10.1109/etfa46521.2020.9211946
摘要

In order to enable changeable production of Industry 4.0 applications, a production system should respond to unpredictable changes quickly and adequately. This requires process planning to be performed based on the real time operating conditions and dynamic changes to be handled with cognitive skills. To meet this demand, we present a process planning approach using digital twins and reinforcement learning to derive near-optimal process plans. The digital twins enable access to real-time information about the production system. They also constitute the environment for training the agent of the reinforcement learning method. The environment works as a virtual plant, containing the attributes of the product and resources, and uses simulation models of the resources to calculate the reward for an action in terms of reinforcement learning. Reinforcement learning enables our approach to derive process plans via trial and error. Besides the virtual plant, our approach has a planner, which plays the role of the agent to derive near-optimal plans by trying different actions in the virtual plant, and observes the rewards. We apply the Q-learning algorithm to derive near optimal process plans. The evaluation results show that our approach is able to derive near-optimal process plans for different problem sizes. The evaluation also demonstrated the planner's ability to identify by itself which action to take in which situation. Consequently, no modeling of the preconditions and effects of the actions is necessary.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助Always采纳,获得10
刚刚
刚刚
汉堡包应助铃兰采纳,获得10
1秒前
凝凝小发布了新的文献求助10
1秒前
新晋牛马发布了新的文献求助10
1秒前
1秒前
922完成签到,获得积分10
1秒前
LL完成签到,获得积分10
1秒前
2秒前
费飞扬发布了新的文献求助10
3秒前
xxzztt完成签到,获得积分10
3秒前
3秒前
3秒前
link咩完成签到,获得积分10
3秒前
4秒前
伍六柒完成签到,获得积分20
4秒前
mm发布了新的文献求助10
5秒前
5秒前
小白完成签到,获得积分10
5秒前
杨德帅发布了新的文献求助10
5秒前
樱桃完成签到,获得积分10
5秒前
熠熠完成签到,获得积分10
5秒前
小茜完成签到 ,获得积分10
5秒前
5秒前
热热发布了新的文献求助10
6秒前
asdfzxcv应助61Cu采纳,获得10
6秒前
宴究生完成签到,获得积分10
7秒前
Ping完成签到,获得积分10
7秒前
克莱完成签到,获得积分10
7秒前
my196755发布了新的文献求助10
7秒前
Ava应助922采纳,获得10
8秒前
SIC完成签到,获得积分10
8秒前
狐狸小姐完成签到,获得积分10
9秒前
whf发布了新的文献求助30
9秒前
丁晓彤发布了新的文献求助10
9秒前
10秒前
dxh完成签到,获得积分20
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646235
求助须知:如何正确求助?哪些是违规求助? 4770584
关于积分的说明 15033924
捐赠科研通 4804968
什么是DOI,文献DOI怎么找? 2569335
邀请新用户注册赠送积分活动 1526419
关于科研通互助平台的介绍 1485810