Dynamic Process Planning using Digital Twins and Reinforcement Learning

强化学习 计算机科学 过程(计算) 规划师 动作(物理) 生产(经济) 人工智能 工业工程 机器学习 工程类 量子力学 操作系统 物理 宏观经济学 经济
作者
Zai Müller‐Zhang,Pablo Oliveira Antonino,Thomas Kühn
标识
DOI:10.1109/etfa46521.2020.9211946
摘要

In order to enable changeable production of Industry 4.0 applications, a production system should respond to unpredictable changes quickly and adequately. This requires process planning to be performed based on the real time operating conditions and dynamic changes to be handled with cognitive skills. To meet this demand, we present a process planning approach using digital twins and reinforcement learning to derive near-optimal process plans. The digital twins enable access to real-time information about the production system. They also constitute the environment for training the agent of the reinforcement learning method. The environment works as a virtual plant, containing the attributes of the product and resources, and uses simulation models of the resources to calculate the reward for an action in terms of reinforcement learning. Reinforcement learning enables our approach to derive process plans via trial and error. Besides the virtual plant, our approach has a planner, which plays the role of the agent to derive near-optimal plans by trying different actions in the virtual plant, and observes the rewards. We apply the Q-learning algorithm to derive near optimal process plans. The evaluation results show that our approach is able to derive near-optimal process plans for different problem sizes. The evaluation also demonstrated the planner's ability to identify by itself which action to take in which situation. Consequently, no modeling of the preconditions and effects of the actions is necessary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助XPR采纳,获得10
刚刚
万嘉俊完成签到,获得积分10
1秒前
LIU230907发布了新的文献求助10
3秒前
bingo发布了新的文献求助10
4秒前
GL发布了新的文献求助10
5秒前
Miller应助可靠的寒风采纳,获得10
5秒前
white33完成签到,获得积分20
6秒前
zhaow发布了新的文献求助10
6秒前
王太白完成签到,获得积分10
6秒前
3268590946完成签到,获得积分10
7秒前
skbkbe完成签到 ,获得积分10
7秒前
8秒前
哔哔鱼完成签到,获得积分10
9秒前
bolunxier完成签到,获得积分10
10秒前
10秒前
小马甲应助医者仁心采纳,获得30
11秒前
小饭完成签到,获得积分10
11秒前
奋斗的萝发布了新的文献求助10
12秒前
顾矜应助michal采纳,获得10
13秒前
13秒前
我是老大应助冷静雅香采纳,获得10
14秒前
林白劳发布了新的文献求助10
14秒前
hehehe发布了新的文献求助20
14秒前
莱茵关注了科研通微信公众号
15秒前
wanci应助缓慢白山采纳,获得10
16秒前
yg发布了新的文献求助10
16秒前
16秒前
上官若男应助zhaow采纳,获得10
17秒前
Jasper应助Kelsey采纳,获得10
17秒前
wqq发布了新的文献求助30
17秒前
18秒前
18秒前
18秒前
meimhuang发布了新的文献求助10
19秒前
长情青烟发布了新的文献求助10
19秒前
20秒前
22秒前
lupin完成签到,获得积分20
23秒前
23秒前
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148815
求助须知:如何正确求助?哪些是违规求助? 2799847
关于积分的说明 7837294
捐赠科研通 2457351
什么是DOI,文献DOI怎么找? 1307824
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663