Dynamic Process Planning using Digital Twins and Reinforcement Learning

强化学习 计算机科学 过程(计算) 规划师 动作(物理) 生产(经济) 人工智能 工业工程 机器学习 工程类 量子力学 操作系统 物理 宏观经济学 经济
作者
Zai Müller‐Zhang,Pablo Oliveira Antonino,Thomas Kühn
标识
DOI:10.1109/etfa46521.2020.9211946
摘要

In order to enable changeable production of Industry 4.0 applications, a production system should respond to unpredictable changes quickly and adequately. This requires process planning to be performed based on the real time operating conditions and dynamic changes to be handled with cognitive skills. To meet this demand, we present a process planning approach using digital twins and reinforcement learning to derive near-optimal process plans. The digital twins enable access to real-time information about the production system. They also constitute the environment for training the agent of the reinforcement learning method. The environment works as a virtual plant, containing the attributes of the product and resources, and uses simulation models of the resources to calculate the reward for an action in terms of reinforcement learning. Reinforcement learning enables our approach to derive process plans via trial and error. Besides the virtual plant, our approach has a planner, which plays the role of the agent to derive near-optimal plans by trying different actions in the virtual plant, and observes the rewards. We apply the Q-learning algorithm to derive near optimal process plans. The evaluation results show that our approach is able to derive near-optimal process plans for different problem sizes. The evaluation also demonstrated the planner's ability to identify by itself which action to take in which situation. Consequently, no modeling of the preconditions and effects of the actions is necessary.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助lcpppppp采纳,获得10
1秒前
核桃发布了新的文献求助10
1秒前
221发布了新的文献求助10
1秒前
失眠的冬易完成签到 ,获得积分10
1秒前
drew完成签到 ,获得积分10
2秒前
dreamode完成签到,获得积分10
2秒前
优美的梦玉完成签到,获得积分20
3秒前
星星完成签到,获得积分10
3秒前
舒心睿渊完成签到,获得积分20
3秒前
万能图书馆应助QQQ采纳,获得10
3秒前
李小强完成签到,获得积分10
3秒前
michael发布了新的文献求助10
4秒前
orixero应助xxy采纳,获得10
4秒前
隐形曼青应助康明雪采纳,获得10
4秒前
天天快乐应助球球泥惹111采纳,获得10
5秒前
ken131发布了新的文献求助20
5秒前
量子星尘发布了新的文献求助10
5秒前
nature应助清浅采纳,获得10
5秒前
7秒前
英俊的铭应助清河聂氏采纳,获得10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
Hello应助keyanniniz采纳,获得10
7秒前
swall5w完成签到,获得积分10
7秒前
9秒前
9秒前
魔丸学医完成签到,获得积分10
9秒前
科研通AI6应助吱吱采纳,获得10
9秒前
99完成签到,获得积分10
10秒前
Reborn发布了新的文献求助10
11秒前
11秒前
SYX完成签到,获得积分10
11秒前
大模型应助红朱古力酒采纳,获得10
11秒前
拼搏绿柳完成签到,获得积分0
12秒前
霞霞子完成签到 ,获得积分10
12秒前
美少女完成签到,获得积分10
12秒前
非少发布了新的文献求助10
13秒前
13秒前
烟熏柿子完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666928
求助须知:如何正确求助?哪些是违规求助? 4883518
关于积分的说明 15118330
捐赠科研通 4825864
什么是DOI,文献DOI怎么找? 2583597
邀请新用户注册赠送积分活动 1537760
关于科研通互助平台的介绍 1495956