Dynamic Process Planning using Digital Twins and Reinforcement Learning

强化学习 计算机科学 过程(计算) 规划师 动作(物理) 生产(经济) 人工智能 工业工程 机器学习 工程类 量子力学 操作系统 物理 宏观经济学 经济
作者
Zai Müller‐Zhang,Pablo Oliveira Antonino,Thomas Kühn
标识
DOI:10.1109/etfa46521.2020.9211946
摘要

In order to enable changeable production of Industry 4.0 applications, a production system should respond to unpredictable changes quickly and adequately. This requires process planning to be performed based on the real time operating conditions and dynamic changes to be handled with cognitive skills. To meet this demand, we present a process planning approach using digital twins and reinforcement learning to derive near-optimal process plans. The digital twins enable access to real-time information about the production system. They also constitute the environment for training the agent of the reinforcement learning method. The environment works as a virtual plant, containing the attributes of the product and resources, and uses simulation models of the resources to calculate the reward for an action in terms of reinforcement learning. Reinforcement learning enables our approach to derive process plans via trial and error. Besides the virtual plant, our approach has a planner, which plays the role of the agent to derive near-optimal plans by trying different actions in the virtual plant, and observes the rewards. We apply the Q-learning algorithm to derive near optimal process plans. The evaluation results show that our approach is able to derive near-optimal process plans for different problem sizes. The evaluation also demonstrated the planner's ability to identify by itself which action to take in which situation. Consequently, no modeling of the preconditions and effects of the actions is necessary.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LQQ发布了新的文献求助10
刚刚
轻歌水越发布了新的文献求助10
刚刚
刚刚
Owen应助怕孤独的迎梦采纳,获得10
刚刚
霖尤发布了新的文献求助20
1秒前
1秒前
遇见完成签到,获得积分20
1秒前
尼古拉斯发布了新的文献求助10
2秒前
2秒前
在水一方应助HCT采纳,获得10
3秒前
hhl完成签到,获得积分10
3秒前
3秒前
Eukarya完成签到,获得积分10
3秒前
勿忘9451发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
zzz完成签到,获得积分10
5秒前
清脆苑博发布了新的文献求助10
5秒前
xuxuux完成签到,获得积分10
5秒前
6秒前
cc发布了新的文献求助10
6秒前
6秒前
ceeray23应助薄荷喵采纳,获得10
6秒前
在水一方应助小宇采纳,获得10
7秒前
4149发布了新的文献求助10
7秒前
7秒前
8秒前
无极微光应助123456采纳,获得20
9秒前
夕寸发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
英姑应助七点半采纳,获得10
10秒前
LYP发布了新的文献求助10
10秒前
10秒前
充电宝应助星星采纳,获得10
10秒前
刘海婷完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836