Multiscale space-time-frequency feature-guided multitask learning CNN for motor imagery EEG classification

计算机科学 人工智能 卷积神经网络 稳健性(进化) 多任务学习 脑-机接口 脑电图 模式识别(心理学) 运动表象 深度学习 特征(语言学) 任务(项目管理) 特征提取 语音识别 机器学习 特征学习 基因 心理学 精神科 哲学 生物化学 经济 语言学 化学 管理
作者
Xiuling Liu,Linyang Lv,Yonglong Shen,Peng Xiong,Jing Wang,Jing Liu
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (2): 026003-026003 被引量:35
标识
DOI:10.1088/1741-2552/abd82b
摘要

Abstract Objective . Motor imagery (MI) electroencephalography (EEG) classification is regarded as a promising technology for brain–computer interface (BCI) systems, which help people to communicate with the outside world using neural activities. However, decoding human intent accurately is a challenging task because of its small signal-to-noise ratio and non-stationary characteristics. Methods that directly extract features from raw EEG signals ignores key frequency domain information. One of the challenges in MI classification tasks is finding a way to supplement the frequency domain information ignored by the raw EEG signal. Approach . In this study, we fuse different models using their complementary characteristics to develop a multiscale space-time-frequency feature-guided multitask learning convolutional neural network (CNN) architecture. The proposed method consists of four modules: the space-time feature-based representation module, time-frequency feature-based representation module, multimodal fused feature-guided generation module, and classification module. The proposed framework is based on multitask learning. The four modules are trained using three tasks simultaneously and jointly optimized. Results . The proposed method is evaluated using three public challenge datasets. Through quantitative analysis, we demonstrate that our proposed method outperforms most state-of-the-art machine learning and deep learning techniques for EEG classification, thereby demonstrating the robustness and effectiveness of our method. Moreover, the proposed method is employed to realize control of robot based on EEG signal, verifying its feasibility in real-time applications. Significance . To the best of our knowledge, a deep CNN architecture that fuses different input cases, which have complementary characteristics, has not been applied to BCI tasks. Because of the interaction of the three tasks in the multitask learning architecture, our method can improve the generalization and accuracy of subject-dependent and subject-independent methods with limited annotated data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助顾闭月采纳,获得10
刚刚
新的心跳发布了新的文献求助10
刚刚
白石杏发布了新的文献求助10
刚刚
风中寄云发布了新的文献求助10
1秒前
langzi完成签到,获得积分10
3秒前
haifang完成签到,获得积分10
3秒前
大个应助zhui采纳,获得10
3秒前
哎呀完成签到 ,获得积分10
4秒前
5秒前
哈哈哈哈发布了新的文献求助10
5秒前
5秒前
Wang完成签到,获得积分10
5秒前
请叫我风吹麦浪应助kevin采纳,获得20
6秒前
6秒前
6秒前
吃点水果保护局完成签到 ,获得积分10
7秒前
gs完成签到,获得积分10
7秒前
Xyyy完成签到,获得积分10
7秒前
8秒前
白石杏完成签到,获得积分10
10秒前
ll200207完成签到,获得积分10
11秒前
凶狠的乐巧完成签到,获得积分10
11秒前
Lin发布了新的文献求助10
12秒前
三七发布了新的文献求助10
12秒前
12秒前
鸣隐发布了新的文献求助10
12秒前
13秒前
13秒前
软豆皮完成签到,获得积分10
13秒前
lan完成签到,获得积分10
14秒前
英姑应助松松果采纳,获得10
14秒前
15秒前
15秒前
15秒前
15秒前
chillin发布了新的文献求助10
16秒前
zhui发布了新的文献求助10
16秒前
薪炭林完成签到,获得积分10
17秒前
Rrr发布了新的文献求助10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794