已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiscale space-time-frequency feature-guided multitask learning CNN for motor imagery EEG classification

计算机科学 人工智能 卷积神经网络 稳健性(进化) 多任务学习 脑-机接口 脑电图 模式识别(心理学) 运动表象 深度学习 特征(语言学) 任务(项目管理) 特征提取 语音识别 机器学习 特征学习 基因 心理学 精神科 哲学 生物化学 经济 语言学 化学 管理
作者
Xiuling Liu,Linyang Lv,Yonglong Shen,Peng Xiong,Jing Wang,Jing Liu
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (2): 026003-026003 被引量:35
标识
DOI:10.1088/1741-2552/abd82b
摘要

Abstract Objective . Motor imagery (MI) electroencephalography (EEG) classification is regarded as a promising technology for brain–computer interface (BCI) systems, which help people to communicate with the outside world using neural activities. However, decoding human intent accurately is a challenging task because of its small signal-to-noise ratio and non-stationary characteristics. Methods that directly extract features from raw EEG signals ignores key frequency domain information. One of the challenges in MI classification tasks is finding a way to supplement the frequency domain information ignored by the raw EEG signal. Approach . In this study, we fuse different models using their complementary characteristics to develop a multiscale space-time-frequency feature-guided multitask learning convolutional neural network (CNN) architecture. The proposed method consists of four modules: the space-time feature-based representation module, time-frequency feature-based representation module, multimodal fused feature-guided generation module, and classification module. The proposed framework is based on multitask learning. The four modules are trained using three tasks simultaneously and jointly optimized. Results . The proposed method is evaluated using three public challenge datasets. Through quantitative analysis, we demonstrate that our proposed method outperforms most state-of-the-art machine learning and deep learning techniques for EEG classification, thereby demonstrating the robustness and effectiveness of our method. Moreover, the proposed method is employed to realize control of robot based on EEG signal, verifying its feasibility in real-time applications. Significance . To the best of our knowledge, a deep CNN architecture that fuses different input cases, which have complementary characteristics, has not been applied to BCI tasks. Because of the interaction of the three tasks in the multitask learning architecture, our method can improve the generalization and accuracy of subject-dependent and subject-independent methods with limited annotated data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tier3完成签到,获得积分10
3秒前
4秒前
丘比特应助midokaori采纳,获得10
4秒前
4秒前
今后应助diyanbruker采纳,获得10
5秒前
十斤菠菜发布了新的文献求助10
5秒前
7秒前
Fx发布了新的文献求助10
10秒前
10秒前
11秒前
冷静机器猫完成签到,获得积分10
13秒前
13秒前
Glufo发布了新的文献求助10
13秒前
小马甲应助yemuan采纳,获得10
14秒前
diyanbruker发布了新的文献求助10
14秒前
Apei完成签到 ,获得积分10
15秒前
SJW--666完成签到,获得积分0
16秒前
缥缈的灵凡完成签到 ,获得积分10
16秒前
Fx完成签到,获得积分10
16秒前
midokaori发布了新的文献求助10
16秒前
17秒前
量子星尘发布了新的文献求助10
19秒前
xiaolinsang完成签到,获得积分10
21秒前
23秒前
在水一方应助风中的丝袜采纳,获得10
24秒前
24秒前
24秒前
26秒前
火星上草丛完成签到,获得积分10
29秒前
雷清宇完成签到 ,获得积分10
29秒前
29秒前
塞辣发布了新的文献求助10
30秒前
30秒前
30秒前
31秒前
iNk应助crebHuman采纳,获得10
32秒前
32秒前
33秒前
35秒前
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956848
求助须知:如何正确求助?哪些是违规求助? 3502932
关于积分的说明 11110720
捐赠科研通 3233931
什么是DOI,文献DOI怎么找? 1787655
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802209