Multiscale space-time-frequency feature-guided multitask learning CNN for motor imagery EEG classification

计算机科学 人工智能 卷积神经网络 稳健性(进化) 多任务学习 脑-机接口 脑电图 模式识别(心理学) 运动表象 深度学习 特征(语言学) 任务(项目管理) 特征提取 语音识别 机器学习 特征学习 基因 心理学 精神科 哲学 生物化学 经济 语言学 化学 管理
作者
Xiuling Liu,Linyang Lv,Yonglong Shen,Peng Xiong,Jing Wang,Jing Liu
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (2): 026003-026003 被引量:35
标识
DOI:10.1088/1741-2552/abd82b
摘要

Abstract Objective . Motor imagery (MI) electroencephalography (EEG) classification is regarded as a promising technology for brain–computer interface (BCI) systems, which help people to communicate with the outside world using neural activities. However, decoding human intent accurately is a challenging task because of its small signal-to-noise ratio and non-stationary characteristics. Methods that directly extract features from raw EEG signals ignores key frequency domain information. One of the challenges in MI classification tasks is finding a way to supplement the frequency domain information ignored by the raw EEG signal. Approach . In this study, we fuse different models using their complementary characteristics to develop a multiscale space-time-frequency feature-guided multitask learning convolutional neural network (CNN) architecture. The proposed method consists of four modules: the space-time feature-based representation module, time-frequency feature-based representation module, multimodal fused feature-guided generation module, and classification module. The proposed framework is based on multitask learning. The four modules are trained using three tasks simultaneously and jointly optimized. Results . The proposed method is evaluated using three public challenge datasets. Through quantitative analysis, we demonstrate that our proposed method outperforms most state-of-the-art machine learning and deep learning techniques for EEG classification, thereby demonstrating the robustness and effectiveness of our method. Moreover, the proposed method is employed to realize control of robot based on EEG signal, verifying its feasibility in real-time applications. Significance . To the best of our knowledge, a deep CNN architecture that fuses different input cases, which have complementary characteristics, has not been applied to BCI tasks. Because of the interaction of the three tasks in the multitask learning architecture, our method can improve the generalization and accuracy of subject-dependent and subject-independent methods with limited annotated data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mr.egg发布了新的文献求助10
1秒前
丘比特应助小蜗牛采纳,获得30
1秒前
深情安青应助ll采纳,获得10
1秒前
阔达紫青应助AliHamid采纳,获得10
1秒前
sll发布了新的文献求助10
1秒前
2秒前
乐观道之完成签到,获得积分10
2秒前
科研通AI5应助ln采纳,获得10
2秒前
2秒前
czl发布了新的文献求助10
3秒前
天天快乐应助111采纳,获得10
3秒前
丂枧完成签到 ,获得积分10
3秒前
yidiao007完成签到,获得积分20
3秒前
4秒前
爆米花应助ComeOn采纳,获得10
4秒前
5秒前
6秒前
7秒前
冯亚茹发布了新的文献求助10
8秒前
8秒前
8秒前
端庄大白完成签到 ,获得积分10
9秒前
qinkoko完成签到,获得积分10
10秒前
活泼的牛青完成签到 ,获得积分10
11秒前
GeneYang完成签到 ,获得积分10
11秒前
11秒前
12秒前
dengdengdeng发布了新的文献求助10
12秒前
shionn发布了新的文献求助10
12秒前
ink发布了新的文献求助10
13秒前
爆米花应助四十四次日落采纳,获得10
13秒前
mumu三应助yuhanz采纳,获得10
14秒前
Lucas应助jindou采纳,获得10
14秒前
14秒前
FF完成签到 ,获得积分10
14秒前
15秒前
CodeCraft应助nong12123采纳,获得10
15秒前
川上富江完成签到 ,获得积分10
16秒前
16秒前
Godzilla完成签到,获得积分10
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774200
求助须知:如何正确求助?哪些是违规求助? 3319877
关于积分的说明 10197394
捐赠科研通 3034433
什么是DOI,文献DOI怎么找? 1665030
邀请新用户注册赠送积分活动 796533
科研通“疑难数据库(出版商)”最低求助积分说明 757510