Parametric upconversion imaging and its applications

光子上转换 参数统计 材料科学 和频产生 光学 铌酸锂 非线性光学 计算机科学 光电子学 物理 激光器 数学 统计
作者
Ajanta Barh,Peter John Rodrigo,Lichun Meng,Christian Pedersen,Peter Tidemand‐Lichtenberg
出处
期刊:Advances in Optics and Photonics [The Optical Society]
卷期号:11 (4): 952-952 被引量:76
标识
DOI:10.1364/aop.11.000952
摘要

This paper provides an extensive survey of nonlinear parametric upconversion infrared (IR) imaging, from its origin to date. Upconversion imaging is a successful innovative technique for IR imaging in terms of sensitivity, speed, and noise performance. In this approach, the IR image is frequency upconverted to form a visible/near-IR image through parametric three-wave mixing followed by detection using a silicon-based detector or camera. In 1968, Midwinter first demonstrated upconversion imaging from short-wave-IR (1.6 μm) to visible (484 nm) wavelength using a bulk lithium niobate crystal. This technique quickly gained interest, and several other groups demonstrated upconversion imaging further into the mid- and far-IR with significantly improved quantum efficiency. Although a few excellent reviews on upconversion imaging were published in the early 1970s, the rapid progress in recent years merits an updated comprehensive review. The topic includes linear imaging, nonlinear optics, and laser science and has shown diverse applications. The scope of this article is to provide in-depth knowledge of upconversion imaging theory. An overview of different phase matching conditions for the parametric process and the sensitivity of the upconversion detection system are discussed. Furthermore, different design considerations and optimization schemes are outlined for application-specific upconversion imaging. The article comprises a historical perspective of the technique, its most recent technological advances, specific outstanding issues, and some cutting-edge applications of upconversion in IR imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
韭菜盒子发布了新的文献求助10
1秒前
1秒前
大意的安白完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
学术蟑螂完成签到,获得积分10
2秒前
2秒前
2秒前
兴奋冷松完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
饭小心完成签到,获得积分20
3秒前
luodd完成签到 ,获得积分10
5秒前
研友_VZG7GZ应助EOFG0PW采纳,获得10
5秒前
小吴发布了新的文献求助10
5秒前
甜甜灵槐发布了新的文献求助10
6秒前
yyang发布了新的文献求助10
6秒前
6秒前
超级水壶发布了新的文献求助10
6秒前
manan发布了新的文献求助10
6秒前
6秒前
fxy完成签到 ,获得积分10
7秒前
爆米花应助大意的安白采纳,获得10
7秒前
wen完成签到,获得积分10
7秒前
Lucas应助徐慕源采纳,获得10
7秒前
袁国惠发布了新的文献求助10
7秒前
加油发布了新的文献求助10
7秒前
天天快乐应助韭菜盒子采纳,获得10
7秒前
8秒前
圣晟胜发布了新的文献求助10
8秒前
耍酷的白梦完成签到,获得积分10
8秒前
斯文的若颜完成签到,获得积分10
9秒前
9秒前
Firefly完成签到,获得积分10
9秒前
zjh完成签到,获得积分20
9秒前
科研通AI5应助陆离采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740