A review of computer vision technologies for plant phenotyping

物候学 计算机科学 特质 分类 人工智能 数据科学 机器学习 生物 基因组学 生物化学 基因 基因组 程序设计语言
作者
Zhenbo Li,Ruohao Guo,Meng Li,Yaru Chen,Guangyao Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:176: 105672-105672 被引量:267
标识
DOI:10.1016/j.compag.2020.105672
摘要

Plant phenotype plays an important role in genetics, botany, and agronomy, while the currently popular methods for phenotypic trait measurement have some limitations in aspects of cost, performance, and space-time coverage. With the rapid development of imaging technology, computing power, and algorithms, computer vision has thoroughly revolutionized the plant phenotyping and is now a major tool for phenotypic analysis. Based on the above reasons, researchers are devoted to developing image-based plant phenotyping methods as a complementary or even alternative to the manual measurement. However, the use of computer vision technology to analyze plant phenotypic traits can be affected by many factors such as research environment, imaging system, research object, feature extraction, model selection, and so on. Currently, there is no review paper to compare and analyze these methods thoroughly. Therefore, this review introduces the typical plant phenotyping methods based on computer vision in detail, with their principle, applicable range, results, and comparison. This paper extensively reviews 200+ papers of plant phenotyping in the light of its technical evolution, spanning over twenty years (from 2000 to 2020). A number of topics have been covered in this paper, including imaging technologies, plant datasets, and state-of-the-art phenotyping methods. In this review, we categorize the plant phenotyping into two main groups: plant organ phenotyping and whole-plant phenotyping. Furthermore, for each group, we analyze each research of these groups and discuss the limitations of the current approaches and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助傲娇一一采纳,获得10
1秒前
乐观信封完成签到,获得积分20
1秒前
2秒前
落寞依珊应助深情寒松采纳,获得10
2秒前
科研小白完成签到,获得积分10
2秒前
2秒前
干净初彤发布了新的文献求助10
2秒前
Liziqi823发布了新的文献求助10
3秒前
3秒前
一只小鸮发布了新的文献求助10
3秒前
xiaoxiao发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
所所应助空格TNT采纳,获得10
4秒前
shenyanlei发布了新的文献求助10
4秒前
5秒前
Apei发布了新的文献求助10
5秒前
5秒前
科目三应助雨碎寒江采纳,获得10
5秒前
顾矜应助虚拟的雨雪采纳,获得30
5秒前
英姑应助djx123采纳,获得10
5秒前
含蓄的纹完成签到,获得积分10
6秒前
Alice发布了新的文献求助10
6秒前
学术laji发布了新的文献求助10
6秒前
英俊的铭应助大老黑采纳,获得10
7秒前
7秒前
小天才儿童手表完成签到,获得积分10
7秒前
7秒前
7秒前
jjjmsekk发布了新的文献求助10
7秒前
8秒前
dt发布了新的文献求助10
9秒前
liuttinn完成签到,获得积分10
9秒前
鳗鱼涵梅发布了新的文献求助10
9秒前
yy湫发布了新的文献求助10
9秒前
栗子完成签到,获得积分10
9秒前
9秒前
所所应助shenyanlei采纳,获得10
10秒前
Suta应助陶陶采纳,获得10
10秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488284
求助须知:如何正确求助?哪些是违规求助? 3076029
关于积分的说明 9143413
捐赠科研通 2768356
什么是DOI,文献DOI怎么找? 1519139
邀请新用户注册赠送积分活动 703551
科研通“疑难数据库(出版商)”最低求助积分说明 701922