Commonality Autoencoder: Learning Common Features for Change Detection From Heterogeneous Images

自编码 人工智能 模式识别(心理学) 计算机科学 变更检测 特征(语言学) 分割 特征提取 深度学习 特征学习 代表(政治) 图像(数学) 政治 哲学 法学 语言学 政治学
作者
Yue Wu,Jiaheng Li,Yongzhe Yuan,A. K. Qin,Qiguang Miao,Maoguo Gong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (9): 4257-4270 被引量:146
标识
DOI:10.1109/tnnls.2021.3056238
摘要

Change detection based on heterogeneous images, such as optical images and synthetic aperture radar images, is a challenging problem because of their huge appearance differences. To combat this problem, we propose an unsupervised change detection method that contains only a convolutional autoencoder (CAE) for feature extraction and the commonality autoencoder for commonalities exploration. The CAE can eliminate a large part of redundancies in two heterogeneous images and obtain more consistent feature representations. The proposed commonality autoencoder has the ability to discover common features of ground objects between two heterogeneous images by transforming one heterogeneous image representation into another. The unchanged regions with the same ground objects share much more common features than the changed regions. Therefore, the number of common features can indicate changed regions and unchanged regions, and then a difference map can be calculated. At last, the change detection result is generated by applying a segmentation algorithm to the difference map. In our method, the network parameters of the commonality autoencoder are learned by the relevance of unchanged regions instead of the labels. Our experimental results on five real data sets demonstrate the promising performance of the proposed framework compared with several existing approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Boo发布了新的文献求助10
3秒前
wwk发布了新的文献求助10
4秒前
www完成签到 ,获得积分10
6秒前
an完成签到,获得积分10
7秒前
在水一方应助余闻问采纳,获得10
9秒前
Hemingwayway发布了新的文献求助10
10秒前
12秒前
传奇3应助一只龟龟采纳,获得10
13秒前
MHM完成签到,获得积分10
14秒前
初心不变发布了新的文献求助10
14秒前
共享精神应助LIM采纳,获得10
15秒前
15秒前
15秒前
17秒前
dada发布了新的文献求助10
18秒前
20秒前
597发布了新的文献求助10
20秒前
hlx发布了新的文献求助10
21秒前
Lin完成签到,获得积分10
21秒前
wen发布了新的文献求助10
22秒前
L1nJ1nG完成签到,获得积分10
24秒前
24秒前
冰晨完成签到,获得积分10
25秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
快快完成签到,获得积分10
25秒前
搜集达人应助Hemingwayway采纳,获得10
26秒前
余闻问发布了新的文献求助10
29秒前
30秒前
32秒前
34秒前
pangpang1992完成签到 ,获得积分10
34秒前
lllth完成签到,获得积分10
35秒前
筷子吃不了面完成签到,获得积分10
35秒前
宋芽芽u完成签到 ,获得积分10
36秒前
HY完成签到 ,获得积分10
37秒前
小文cremen发布了新的文献求助10
37秒前
summer发布了新的文献求助30
38秒前
我的山本完成签到,获得积分20
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959245
求助须知:如何正确求助?哪些是违规求助? 3505545
关于积分的说明 11124398
捐赠科研通 3237291
什么是DOI,文献DOI怎么找? 1789026
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824