Commonality Autoencoder: Learning Common Features for Change Detection From Heterogeneous Images

自编码 人工智能 模式识别(心理学) 计算机科学 变更检测 特征(语言学) 分割 特征提取 深度学习 特征学习 代表(政治) 图像(数学) 哲学 语言学 政治 政治学 法学
作者
Yue Wu,Jiaheng Li,Yongzhe Yuan,A. K. Qin,Qiguang Miao,Maoguo Gong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (9): 4257-4270 被引量:146
标识
DOI:10.1109/tnnls.2021.3056238
摘要

Change detection based on heterogeneous images, such as optical images and synthetic aperture radar images, is a challenging problem because of their huge appearance differences. To combat this problem, we propose an unsupervised change detection method that contains only a convolutional autoencoder (CAE) for feature extraction and the commonality autoencoder for commonalities exploration. The CAE can eliminate a large part of redundancies in two heterogeneous images and obtain more consistent feature representations. The proposed commonality autoencoder has the ability to discover common features of ground objects between two heterogeneous images by transforming one heterogeneous image representation into another. The unchanged regions with the same ground objects share much more common features than the changed regions. Therefore, the number of common features can indicate changed regions and unchanged regions, and then a difference map can be calculated. At last, the change detection result is generated by applying a segmentation algorithm to the difference map. In our method, the network parameters of the commonality autoencoder are learned by the relevance of unchanged regions instead of the labels. Our experimental results on five real data sets demonstrate the promising performance of the proposed framework compared with several existing approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
慕青应助魄魄olm采纳,获得10
刚刚
木木发布了新的文献求助10
1秒前
科研通AI6应助天才玩家H采纳,获得20
1秒前
Uu发布了新的文献求助10
1秒前
科研通AI6应助未雨采纳,获得10
1秒前
今后应助wuyy采纳,获得10
3秒前
4秒前
4秒前
4秒前
于跃发布了新的文献求助10
5秒前
Xx完成签到 ,获得积分10
5秒前
歪比巴卜发布了新的文献求助20
5秒前
6秒前
WA完成签到,获得积分10
6秒前
6秒前
6秒前
念梦发布了新的文献求助10
6秒前
7秒前
隐形曼青应助一颗小花生采纳,获得10
8秒前
濯枝雨完成签到,获得积分10
8秒前
artoria完成签到,获得积分10
8秒前
科研通AI2S应助Z赵采纳,获得10
8秒前
8秒前
刘小姐完成签到,获得积分10
8秒前
酷波er应助danielsong采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
传奇3应助叮叮当采纳,获得10
10秒前
司空元正发布了新的文献求助10
10秒前
过时的画板完成签到,获得积分10
11秒前
风趣冰棍发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
八一驳回了烟花应助
12秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581693
求助须知:如何正确求助?哪些是违规求助? 4665895
关于积分的说明 14759417
捐赠科研通 4607833
什么是DOI,文献DOI怎么找? 2528395
邀请新用户注册赠送积分活动 1497666
关于科研通互助平台的介绍 1466553