Transcriptomic analysis of endometrial receptivity for a genomic diagnostics model of Chinese women

转录组 子宫内膜 月经周期 生物 基因 RNA序列 人口 医学 内科学 计算生物学 肿瘤科 生理学 男科 基因表达 激素 遗传学 环境卫生
作者
Wenbi Zhang,Qing X. Li,Hu Liu,Weijian Chen,Chunlei Zhang,He Li,Xiang Lu,Junling Chen,Liwu Li,Han Wu,Xiaoxi Sun
出处
期刊:Fertility and Sterility [Elsevier]
卷期号:116 (1): 157-164 被引量:3
标识
DOI:10.1016/j.fertnstert.2020.11.010
摘要

Objective

To define the transcriptomic signature with respect to human endometrial receptivity in Chinese women by next-generation sequencing and to develop a more refined and customized bioinformatic predictive method for endometrial dating in Chinese women.

Design

Randomized.

Setting

A tertiary hospital−based reproductive medicine center.

Patient(s)

Ninety healthy, fertile Chinese women.

Intervention(s)

Human endometrial biopsies.

Main Outcome Measure(s)

Gene expression of endometrial biopsies.

Result(s)

Ninety endometrial samples from healthy Chinese women during their menstrual cycles—including prereceptive (luteinizing hormone [LH] + 3 days/LH + 5 days), receptive (LH + 7 days), and post-receptive (LH + 9 days) phases—were subjected to transcriptomic analysis using messenger RNA (mRNA)-enriched RNA-Seq. Feature genes were obtained and used to train the predictor for endometrial dating, with 63 samples for the training set and 27 samples for the validation set. Differentially expressed genes (DEGs) were identified by comparing samples from different phases of the menstrual cycle. Based on the transcriptomic feature genes, we constructed a bioinformatic predictor for endometrial dating. The accuracy on assessment of the endometrium on days LH + 3, LH + 5, LH + 7, and LH + 9 was 100% in the training set and 85.19% in the validation set.

Conclusion(s)

Our transcriptomic profiling method can be used to monitor the window of implantation with regard to the endometrium in the Chinese population. This method potentially provides an evaluation of endometrial status, and can be used to predict a personal window of implantation by reproductive medicine clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
习习发布了新的文献求助10
1秒前
1秒前
wanci应助drizzling采纳,获得10
1秒前
r93527005完成签到,获得积分10
1秒前
2秒前
霸气谷蕊完成签到 ,获得积分10
4秒前
羊羊羊完成签到,获得积分10
4秒前
4秒前
5秒前
科研通AI5应助WNL采纳,获得10
5秒前
Xuu完成签到,获得积分10
5秒前
外向的沅发布了新的文献求助10
5秒前
徐慕源发布了新的文献求助10
5秒前
夏哈哈完成签到 ,获得积分10
6秒前
默默海露完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
迷路安阳发布了新的文献求助10
8秒前
8秒前
NexusExplorer应助Jolene66采纳,获得10
8秒前
医路有你完成签到,获得积分10
8秒前
9秒前
科研通AI5应助Sean采纳,获得10
9秒前
9秒前
超帅连虎完成签到,获得积分10
9秒前
皓月千里发布了新的文献求助10
9秒前
Grayball应助包容的剑采纳,获得10
9秒前
深情安青应助寒冷书竹采纳,获得10
10秒前
wbj0722完成签到,获得积分10
10秒前
JIAO完成签到,获得积分10
10秒前
10秒前
11秒前
852应助HopeStar采纳,获得10
11秒前
圆圆发布了新的文献求助30
12秒前
Orange应助Promise采纳,获得10
12秒前
一直发布了新的文献求助20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678