Deep Learning Method based on Big Data for Defects Detection in Manufacturing Systems Industry 4.0

大数据 云计算 信息物理系统 多样性(控制论) 物联网 计算机科学 工业4.0 云制造 体积热力学 深度学习 制造业 产品(数学) 工业互联网 工业工程 制造工程 数据科学 人工智能 实时计算 数据挖掘 嵌入式系统 工程类 操作系统 物理 几何学 数学 量子力学 政治学 法学
作者
Ashraf Abou Tabl,Abedalrhman Alkhateeb,Waguih ElMaraghy
出处
期刊:International Journal of Industry and Sustainable Development (Print) 卷期号:2 (1): 1-14 被引量:8
标识
DOI:10.21608/ijisd.2021.145552
摘要

Due to the technological advancement in Today's manufacturing systems, a large amount of data is generated in different volume, velocity, and variety of kinds. Extracting information from these data and make a real-time decision is a big challenge to the current manufacturing systems. This study presents a novel model that converts the iFactory learning facility into a fully Industry 4.0 (I4.0) manufacturing system. To achieve this purpose, we utilized the cyber physical system (CPS) components and sensors, the Internet of Things (IoT), deep learning methods, and cloud computing to fully meet the I4.0 enablers. Cloud computing is utilised in two phases: (1) during the model training phase to hold a large amount of product image data collected from the inspection station, and (2) during the execution of the model. The core learning model is based on a convolutional neural network (CNN) that is trained from the captured product images in the production line to predict the defective items in the line. The model was initialized by Resnet method and optimized to improve the learning rate and reduced loss function. The supervised learning model achieved high accuracy prediction performance up to 96.75% in the real-time decision making process. The model was able to extract the feature map of the normal non-detective product and use it to improving the accuracy and reducing the traffic between iFactory station and the cloud server. The model exploits the parallel computing big-data framework to achieve a real time decision making. The model can be applied to the current system and adopted as with all it is functionalities for the newer systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心的翠萱完成签到,获得积分10
刚刚
my发布了新的文献求助10
刚刚
酷波er应助吴未采纳,获得10
刚刚
CHB只争朝夕完成签到,获得积分10
1秒前
LLIKEES发布了新的文献求助10
2秒前
2秒前
BYG发布了新的文献求助30
4秒前
5秒前
5秒前
红叶完成签到,获得积分10
5秒前
zzzz完成签到,获得积分10
6秒前
七七发布了新的文献求助10
6秒前
MOON完成签到,获得积分10
7秒前
单身的金鱼完成签到 ,获得积分10
10秒前
领导范儿应助冷酷哈密瓜采纳,获得10
10秒前
11秒前
英姑应助zzzz采纳,获得10
12秒前
13秒前
aoer完成签到 ,获得积分10
13秒前
13秒前
14秒前
15秒前
16秒前
16秒前
16秒前
小可爱发布了新的文献求助10
17秒前
吴未发布了新的文献求助10
18秒前
隆东强发布了新的文献求助10
18秒前
20秒前
20秒前
huang发布了新的文献求助10
21秒前
Keyl发布了新的文献求助10
21秒前
HiQ发布了新的文献求助10
21秒前
22秒前
小飞侠发布了新的文献求助10
23秒前
.。。。。发布了新的文献求助10
23秒前
24秒前
MYW完成签到,获得积分10
24秒前
情怀应助小苏采纳,获得10
25秒前
CodeCraft应助LLIKEES采纳,获得10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3752620
求助须知:如何正确求助?哪些是违规求助? 3296178
关于积分的说明 10093036
捐赠科研通 3011119
什么是DOI,文献DOI怎么找? 1653528
邀请新用户注册赠送积分活动 788278
科研通“疑难数据库(出版商)”最低求助积分说明 752801