Future hydropower generation prediction of large-scale reservoirs in the upper Yangtze River basin under climate change

水力发电 缩小尺度 环境科学 气候变化 水资源 地表径流 发电 比例(比率) 构造盆地 水文学(农业) 气候学 水资源管理 地质学 地理 生态学 生物 量子力学 海洋学 物理 地图学 古生物学 功率(物理) 岩土工程
作者
Wenjie Zhong,Jing Guo,Lu Chen,Jianzhong Zhou,Junhong Zhang,Dangwei Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:588: 125013-125013 被引量:71
标识
DOI:10.1016/j.jhydrol.2020.125013
摘要

Climate change, which impacts the spatial and temporal distribution of water resources, has a significant influence on the future hydropower generation. Studying the future evolution pattern of hydropower generation under climate change is of great significance for the medium- and long-term hydropower prediction. The objective of this paper is to predict the future hydropower generation of large-scale reservoir groups under climate change. The innovation of this paper is that the macro-scale distributed hydrological model combined with the optimal operation model of large-scale reservoirs was proposed for hydropower generation prediction. The established model considers the specific operation processes of large-scale reservoir groups, including 62 reservoirs in the case study. First, the Statistical Downscaling Model (SDSM) was built, and the evolution trend of future rainfall and temperature was predicted. Second, the macro-scale distributed Variable Infiltration Capacity (VIC) model was built to predict the future runoff. Finally, the optimal operation generation model of large-scale reservoir groups was established to predict the trends of hydropower generation under climate change. Results demonstrate that under RCP2.6 scenario, there is no significant increase or decrease trend of hydropower generation in the future. But under RCP4.5 and RCP8.5 scenarios, the hydropower generation shows a growing trend, and the increase trend under RCP8.5 scenario is more obvious than that under RCP4.5 scenario. Thus, the development of hydropower generation is sensitive to climate change. This study can provide a reference for the long-term prediction of hydropower generation capacity in the upper Yangtze River Basin.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
充电宝应助ppat5012采纳,获得10
1秒前
2秒前
123发布了新的文献求助10
3秒前
Hello应助谷粱紫槐采纳,获得10
3秒前
Zeze完成签到,获得积分10
3秒前
机智猴完成签到,获得积分10
3秒前
3秒前
BowieHuang应助666采纳,获得10
4秒前
钱大大完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
阿黎发布了新的文献求助30
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Maestro_S应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Maestro_S应助科研通管家采纳,获得10
7秒前
7秒前
Maestro_S应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得30
7秒前
Owen应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
8秒前
张嘉伟发布了新的文献求助10
9秒前
9秒前
xz完成签到,获得积分10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752140
求助须知:如何正确求助?哪些是违规求助? 5472900
关于积分的说明 15373131
捐赠科研通 4891251
什么是DOI,文献DOI怎么找? 2630284
邀请新用户注册赠送积分活动 1578475
关于科研通互助平台的介绍 1534465