Future hydropower generation prediction of large-scale reservoirs in the upper Yangtze River basin under climate change

水力发电 缩小尺度 环境科学 气候变化 水资源 地表径流 发电 比例(比率) 构造盆地 水文学(农业) 气候学 水资源管理 地质学 地理 生态学 生物 量子力学 海洋学 物理 地图学 古生物学 功率(物理) 岩土工程
作者
Wenjie Zhong,Jing Guo,Lu Chen,Jianzhong Zhou,Junhong Zhang,Dangwei Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:588: 125013-125013 被引量:71
标识
DOI:10.1016/j.jhydrol.2020.125013
摘要

Climate change, which impacts the spatial and temporal distribution of water resources, has a significant influence on the future hydropower generation. Studying the future evolution pattern of hydropower generation under climate change is of great significance for the medium- and long-term hydropower prediction. The objective of this paper is to predict the future hydropower generation of large-scale reservoir groups under climate change. The innovation of this paper is that the macro-scale distributed hydrological model combined with the optimal operation model of large-scale reservoirs was proposed for hydropower generation prediction. The established model considers the specific operation processes of large-scale reservoir groups, including 62 reservoirs in the case study. First, the Statistical Downscaling Model (SDSM) was built, and the evolution trend of future rainfall and temperature was predicted. Second, the macro-scale distributed Variable Infiltration Capacity (VIC) model was built to predict the future runoff. Finally, the optimal operation generation model of large-scale reservoir groups was established to predict the trends of hydropower generation under climate change. Results demonstrate that under RCP2.6 scenario, there is no significant increase or decrease trend of hydropower generation in the future. But under RCP4.5 and RCP8.5 scenarios, the hydropower generation shows a growing trend, and the increase trend under RCP8.5 scenario is more obvious than that under RCP4.5 scenario. Thus, the development of hydropower generation is sensitive to climate change. This study can provide a reference for the long-term prediction of hydropower generation capacity in the upper Yangtze River Basin.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
星空完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
8秒前
巧克力完成签到 ,获得积分10
8秒前
HU完成签到,获得积分10
9秒前
垣味栗子酱完成签到,获得积分20
10秒前
胖胖玩啊玩完成签到 ,获得积分10
12秒前
Tammy完成签到,获得积分10
12秒前
阿伟完成签到,获得积分10
14秒前
无极微光应助白华苍松采纳,获得20
15秒前
酷酷的安柏完成签到 ,获得积分10
16秒前
17秒前
lovekobe完成签到 ,获得积分10
17秒前
鲁卓林完成签到,获得积分10
17秒前
甜美傲蕾完成签到,获得积分10
18秒前
18秒前
yunt完成签到 ,获得积分10
20秒前
小高完成签到 ,获得积分10
21秒前
kyros完成签到,获得积分10
22秒前
Java完成签到,获得积分10
22秒前
老实的黑米完成签到 ,获得积分10
23秒前
亲爱的桃乐茜完成签到 ,获得积分10
23秒前
WW完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
七yy完成签到 ,获得积分10
26秒前
甜蜜冷风完成签到,获得积分10
28秒前
李思超完成签到 ,获得积分10
28秒前
健壮的凝冬完成签到 ,获得积分10
29秒前
求真完成签到,获得积分10
30秒前
32秒前
浮游应助草木采纳,获得10
32秒前
白夜完成签到 ,获得积分10
32秒前
32秒前
爆米花完成签到,获得积分10
34秒前
34秒前
35秒前
36秒前
yiyi发布了新的文献求助30
38秒前
bin_zhang完成签到,获得积分10
38秒前
为你等候完成签到,获得积分10
39秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590