亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lithium Metal Anodes: Operando Observation of Nucleation, Dendrite Growth, and Dead Lithium Formation

成核 阳极 材料科学 电解质 金属锂 枝晶(数学) 法拉第效率 电化学 锂(药物) 纳米技术 电极 剥离(纤维) 化学工程 化学 复合材料 工程类 医学 内分泌学 物理化学 有机化学 数学 几何学
作者
Adrian J. Sanchez,Eric Kazyak,Kuan‐Hung Chen,Yuxin Chen,Ethan Pattison,Neil P. Dasgupta
出处
期刊:Meeting abstracts 卷期号:MA2020-01 (19): 1170-1170
标识
DOI:10.1149/ma2020-01191170mtgabs
摘要

Lithium (Li) metal anodes have experienced a resurgence of research in recent years, which has been fueled by advances in electrolyte chemistry (both solid and liquid), interfacial engineering, and rational design of electrode architectures 1 . This has enabled Coulombic efficiency values to push above 99.5%, and cycle life to extend into relevant ranges for transportation applications 2 . However, while performance metrics are beginning to approach relevant values for consideration of their use in electric vehicles, several fundamental questions remain on how Li metal anodes dynamically evolve during cycling, especially at high current densities. Towards this goal, there is a continued need for new methods to understand the evolving morphology from nucleation, to growth, to irreversible capacity loss. In this talk, operando optical microscopy will be discussed as an enabling platform to study the coupled chemical, electrochemical, mechanical, and morphological evolution of Li metal during plating and stripping. By time synchronization of the morphological evolution of Li metal anodes with electrochemical signatures during cycling, significant insights can be obtained into the mechanistic origins of poor performance 3-4 . Both cross-sectional and plan-view perspectives on the electrode surface will be described, which allow for a full 3-dimensional understanding of nucleation and growth processes. Video imaging of Li metal propagation in both liquid and solid electrolytes will be presented, and the critical role of mechanical stress evolution in Li metal morphology will be described 5-6 . A focus will be on the formation of “dead Li”, which form as a result of electronic isolation of metallic Li from the electrode surface 3 . Finally, strategies to modify surface chemistry and electrode geometry will be described, providing design rules for interfacial engineering of optimized electrodes 2 . 1) Wood, K. N.; Noked, M.; Dasgupta, N. P. Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior. ACS Energy Lett. 2017 , 2 (3), 664–672. 2) Chen, K.-H.; Sanchez, A. J.; Kazyak, E.; Davis, A. L.; Dasgupta, N. P. Synergistic Effect of 3D Current Collectors and ALD Surface Modification for High Coulombic Efficiency Lithium Metal Anodes. Adv. Energy Mater. 2019 , 9 (4), 1802534. 3) Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K.-H.; Zhang, J.-G.; Thornton, K.; Dasgupta, N. P. Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy. ACS Cent. Sci. 2016 , 2 (11) 790-801. 4) Chen, K.-H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. Dead Lithium: Mass Transport Effects on Voltage, Capacity, and Failure of Lithium Metal Anodes. J. Mater. Chem. A 2017 , 5 (23), 11671–11681. 5) LePage, W. S.; Chen, Y.; Kazyak, E.; Chen, K.-H.; Sanchez, A. J.; Poli, A.; Arruda, E. M.; Thouless, M. D.; Dasgupta, N. P. Lithium Mechanics: Roles of Strain Rate and Temperature and Implications for Lithium Metal Batteries. J. Electrochem. Soc. 2019 , 166 (2), A89–A97. 6) Gupta, A.; Kazyak, E.; Craig, N.; Christensen, J.; Dasgupta, N. P.; Sakamoto, J. Evaluating the Effects of Temperature and Pressure on Li/PEO-LiTFSI Interfacial Stability and Kinetics. J. Electrochem. Soc. 2018 , 165 (11), A2801–A2806.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YuSHhan完成签到,获得积分10
31秒前
麻辣小龙虾完成签到,获得积分10
34秒前
Ava应助许亦采纳,获得10
40秒前
过时的笙完成签到,获得积分10
46秒前
爆米花应助科研通管家采纳,获得10
55秒前
科研通AI6应助科研通管家采纳,获得10
55秒前
57秒前
英姑应助是你的雨采纳,获得10
1分钟前
鱼鱼鱼完成签到,获得积分10
1分钟前
1分钟前
1分钟前
酷酷海豚完成签到,获得积分10
1分钟前
许亦发布了新的文献求助10
1分钟前
CC发布了新的文献求助10
1分钟前
浮游应助许亦采纳,获得10
1分钟前
1分钟前
榕小蜂完成签到 ,获得积分10
1分钟前
咸烧白胀多了完成签到,获得积分10
1分钟前
wanci应助CC采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Ava应助洁净的诗珊采纳,获得10
1分钟前
2分钟前
慧慧34完成签到 ,获得积分10
2分钟前
HD发布了新的文献求助10
2分钟前
2分钟前
捉迷藏完成签到,获得积分0
2分钟前
田様应助fmx采纳,获得10
2分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
思源应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
所所应助drw993采纳,获得10
3分钟前
3分钟前
一只小喵完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
oscar完成签到,获得积分10
3分钟前
打打应助fmx采纳,获得10
3分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127088
求助须知:如何正确求助?哪些是违规求助? 4330255
关于积分的说明 13493143
捐赠科研通 4165747
什么是DOI,文献DOI怎么找? 2283554
邀请新用户注册赠送积分活动 1284573
关于科研通互助平台的介绍 1224457