Lithium Metal Anodes: Operando Observation of Nucleation, Dendrite Growth, and Dead Lithium Formation

成核 阳极 材料科学 电解质 金属锂 枝晶(数学) 法拉第效率 电化学 锂(药物) 纳米技术 电极 剥离(纤维) 化学工程 化学 复合材料 工程类 医学 内分泌学 物理化学 有机化学 数学 几何学
作者
Adrian J. Sanchez,Eric Kazyak,Kuan‐Hung Chen,Yuxin Chen,Ethan Pattison,Neil P. Dasgupta
出处
期刊:Meeting abstracts 卷期号:MA2020-01 (19): 1170-1170
标识
DOI:10.1149/ma2020-01191170mtgabs
摘要

Lithium (Li) metal anodes have experienced a resurgence of research in recent years, which has been fueled by advances in electrolyte chemistry (both solid and liquid), interfacial engineering, and rational design of electrode architectures 1 . This has enabled Coulombic efficiency values to push above 99.5%, and cycle life to extend into relevant ranges for transportation applications 2 . However, while performance metrics are beginning to approach relevant values for consideration of their use in electric vehicles, several fundamental questions remain on how Li metal anodes dynamically evolve during cycling, especially at high current densities. Towards this goal, there is a continued need for new methods to understand the evolving morphology from nucleation, to growth, to irreversible capacity loss. In this talk, operando optical microscopy will be discussed as an enabling platform to study the coupled chemical, electrochemical, mechanical, and morphological evolution of Li metal during plating and stripping. By time synchronization of the morphological evolution of Li metal anodes with electrochemical signatures during cycling, significant insights can be obtained into the mechanistic origins of poor performance 3-4 . Both cross-sectional and plan-view perspectives on the electrode surface will be described, which allow for a full 3-dimensional understanding of nucleation and growth processes. Video imaging of Li metal propagation in both liquid and solid electrolytes will be presented, and the critical role of mechanical stress evolution in Li metal morphology will be described 5-6 . A focus will be on the formation of “dead Li”, which form as a result of electronic isolation of metallic Li from the electrode surface 3 . Finally, strategies to modify surface chemistry and electrode geometry will be described, providing design rules for interfacial engineering of optimized electrodes 2 . 1) Wood, K. N.; Noked, M.; Dasgupta, N. P. Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior. ACS Energy Lett. 2017 , 2 (3), 664–672. 2) Chen, K.-H.; Sanchez, A. J.; Kazyak, E.; Davis, A. L.; Dasgupta, N. P. Synergistic Effect of 3D Current Collectors and ALD Surface Modification for High Coulombic Efficiency Lithium Metal Anodes. Adv. Energy Mater. 2019 , 9 (4), 1802534. 3) Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K.-H.; Zhang, J.-G.; Thornton, K.; Dasgupta, N. P. Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy. ACS Cent. Sci. 2016 , 2 (11) 790-801. 4) Chen, K.-H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. Dead Lithium: Mass Transport Effects on Voltage, Capacity, and Failure of Lithium Metal Anodes. J. Mater. Chem. A 2017 , 5 (23), 11671–11681. 5) LePage, W. S.; Chen, Y.; Kazyak, E.; Chen, K.-H.; Sanchez, A. J.; Poli, A.; Arruda, E. M.; Thouless, M. D.; Dasgupta, N. P. Lithium Mechanics: Roles of Strain Rate and Temperature and Implications for Lithium Metal Batteries. J. Electrochem. Soc. 2019 , 166 (2), A89–A97. 6) Gupta, A.; Kazyak, E.; Craig, N.; Christensen, J.; Dasgupta, N. P.; Sakamoto, J. Evaluating the Effects of Temperature and Pressure on Li/PEO-LiTFSI Interfacial Stability and Kinetics. J. Electrochem. Soc. 2018 , 165 (11), A2801–A2806.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木子川完成签到,获得积分0
2秒前
sean完成签到 ,获得积分10
3秒前
个性松完成签到 ,获得积分10
3秒前
Hongtao完成签到 ,获得积分10
4秒前
勤劳善良的胖蜜蜂完成签到 ,获得积分10
8秒前
无住生心发布了新的文献求助20
10秒前
OAHCIL完成签到 ,获得积分10
10秒前
木之木完成签到,获得积分10
16秒前
cassie完成签到,获得积分10
17秒前
prayme4完成签到,获得积分10
18秒前
cassie发布了新的文献求助30
20秒前
领导范儿应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
WWXWWX应助科研通管家采纳,获得20
24秒前
英俊的铭应助科研通管家采纳,获得10
24秒前
充电宝应助科研通管家采纳,获得30
24秒前
我是老大应助科研通管家采纳,获得30
24秒前
zxh应助科研通管家采纳,获得10
24秒前
Orange应助科研通管家采纳,获得10
24秒前
CipherSage应助科研通管家采纳,获得10
24秒前
宁少爷应助科研通管家采纳,获得30
24秒前
Gakay完成签到,获得积分10
25秒前
时尚的哈密瓜完成签到,获得积分10
25秒前
美满的冬卉完成签到 ,获得积分10
27秒前
快乐滑板应助xu采纳,获得10
27秒前
misstwo完成签到,获得积分10
29秒前
29秒前
南橘完成签到 ,获得积分10
30秒前
格兰德法泽尔完成签到,获得积分10
31秒前
raiychemj完成签到,获得积分10
33秒前
Jj完成签到,获得积分10
34秒前
言庭兰玉完成签到,获得积分10
34秒前
ironsilica完成签到,获得积分10
34秒前
专注的树完成签到,获得积分10
37秒前
38秒前
你好完成签到 ,获得积分10
43秒前
爱76的5完成签到,获得积分10
44秒前
nenoaowu应助lin采纳,获得30
47秒前
Wangyingjie5完成签到 ,获得积分10
49秒前
5433完成签到,获得积分10
52秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139720
求助须知:如何正确求助?哪些是违规求助? 2790623
关于积分的说明 7795870
捐赠科研通 2447082
什么是DOI,文献DOI怎么找? 1301563
科研通“疑难数据库(出版商)”最低求助积分说明 626274
版权声明 601176